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We present a new approach for simulating the motions of flexible polyelectrolyte chains based on
the continuous kink-jump Monte Carlo technique coupled to a lattice field theory based calculation
of the Poisson–Boltzmann~PB! electrostatic free energy ‘‘on the fly.’’ This approach is compared to
the configurational-bias Monte Carlo technique, in which the chains are grown on a lattice and the
PB equation is solved for each configuration with a linear scaling multigrid method to obtain the
many-body free energy. The two approaches are used to calculate end-to-end distances of charged
polymer chains in solutions with varying ionic strengths and give similar numerical results. The
configurational-bias Monte Carlo/multigrid PB method is found to be more efficient, while the
kink-jump Monte Carlo method shows potential utility for simulating nonequilibrium
polyelectrolyte dynamics. ©2004 American Institute of Physics.@DOI: 10.1063/1.1701841#

I. INTRODUCTION

Polyelectrolyte chains present many theoretical chal-
lenges due to the wide range of length scales which influence
their structure and dynamics in condensed phase solutions.1

These charged polymers figure prominently in both biophysi-
cal and technological applications. The chains can be either
rather rigid ~DNA! or highly flexible ~poly-acrylate or
NaPSS!. Quantities which impact the equilibrium properties
of the chain include charge density along the chain, ionic
strength of the solvent, solvent dielectric constant, and seg-
ment excluded volume size. Recent theoretical work on flex-
ible chains has focused on self-consistent field theories2–4

and molecular level simulations. Simulation research has ei-
ther been at the all-atom restricted primitive model level5,6 or
has utilized effective Debye–Hu¨ckel pair potentials.7,8 In the
present work, we adopt an intermediate strategy by modeling
the polymer chains as discrete and treating the counterions
and any added salt at the continuum Poisson–Boltzmann
~PB! level.

Treating the background ions at the continuum level is a
kind of Born–Oppenheimer approximation for the ion gas. It
assumes that the background ions equilibrate much more
quickly than the polymer chains, and allows for highly effi-
cient sampling on the PB free energy surface. Previous simu-
lations have employed similar approaches for rigid colloidal
systems.9–11

The linearized Debye–Hu¨ckel theory is only strictly ap-
propriate for very small potentials.10 Generally, for charged
polymers, this condition is not met in the region near the
chain. The linearized theory fails to capture the nonlinear

counterion condensation effect which occurs in water for sin-
gly charged counterions when the charge separation is less
than 7.12 Å;12 however, the nonlinear PB equation is known
to properly account for the ion condensation at a semiquan-
titative level, at least for monovalent counterions and
salt.13,14 This condensation can have profound effects on the
equilibrium structure of the chains.

In the present paper we apply the kink-jump Monte
Carlo ~KJMC! and the multigrid configurational bias Monte
Carlo ~CBMC! methods to the problem of calculating end-
to-end distances of free charged polymer chains in electro-
lyte solutions of varying ionic strengths. Results of the two
methods are compared to each other and to analogous calcu-
lations done at the Debye–Hu¨ckel ~DH! level. Also, the rela-
tive efficiency of the two approaches is estimated. A long
term goal of this work is to simulate large charged polymer
systems without explicit inclusion of the ion gas and in a
way which scales linearly with system size.

In Sec. II we describe the KJMC simulations for solving
the PB equation ‘‘on the fly.’’ Then in Sec. III we discuss the
CBMC method for sampling polymer configurations and the
multigrid ~MG! technique for solving the PB equation. Simu-
lation results obtained via both methods are compared in
Sec. IV, where we plot the equilibrium end-to-end distance
of the charged chain as a function of the Debye length~i.e.,
ionic strength of the solution! and the monomer charge. Dis-
cussion and conclusions are provided in Sec. V.

II. MONTE CARLO SIMULATIONS WITH
POISSON–BOLTZMANN CALCULATION OF THE
ELECTROSTATIC FREE ENERGY ‘‘ON THE FLY’’

The first Monte Carlo method we will employ is based
on the kink-jump technique developed by Baumga¨rtner and
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Binder,15 and later used by us to perform Monte Carlo simu-
lations for calculation of partition coefficients of a polymer
chain distributed among cavities with different sizes.16 This
method treats the polymer chain as a ‘‘pearl-necklace’’ in
which two consecutive monomers are connected by a rigid
rod of lengthl 0 . The monomers are modeled as hard spheres
whose radius is adjusted to describe the strength of the ex-
cluded volume interaction. Initially, the chain is placed at
random in the simulation box. Then the chain motion is
evolved by the kink-jump technique, where at each step a
monomer, say thenth one, is picked at random and rotated
around the axis connecting the (n21)th and the (n11)th
monomers by a random angle. If the end monomer is chosen,
it is moved to a new random position keeping the rod length
between it and the monomer to which it is connected fixed.

After each monomer move, the polymer chain is put on
a discrete lattice so that each monomer is placed on the near-
est lattice point to its continuous coordinates. If the lattice
spacing isl, and each point on a cubic lattice is described by
the integer triplen, then the discretized PB equation reads

a(
m

Dnmf̄m5g1 exp~f̄n2Vn!2g2 exp~2f̄n2Vn!

1(
j

Qjdn,Rj
, ~1!

whereDnm is the lattice Laplacian,17 a[e l /4pbq2 with e
the dielectric constant,b51/kT the inverse temperature and
q the proton charge; furthermore;Qj is the charge of thejth
monomer~in units of the proton charge!, located atRj . This
set of difference equations can be solved numerically using
several methods. Here we employ a variational minimization
strategy, as described in Ref. 17. As discussed at length in
that work, the field$f̄n% in Eq. ~1! can be obtained as the
unique minimum of a certain functional of lattice field vari-
ables. To locate this minimum, we employ a simple line
minimization strategy with a Newton–Raphson routine to
find the ~unique! minimum in each successive field
direction.18 Given $f̄n% satisfying Eq.~1!, i.e., the dimen-
sionless PB field~see below!, the electrostatic free energy
can be extracted via the relationship:9,17,19

bA52Jm f1n1 ln g11n2 ln g2 , ~2!

with
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Qj f̄Rj
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In Eqs.~2! and~3!, A is the Helmholtz free energy,n6 is the
number of6 ~monovalent! mobile ions in the solution,V is
an exclusion potential~which is zero in allowed regions of
space and prohibitively high in forbidden regions!, f̄5
2bqf is the dimensionless electrostatic potential solving
the PB equation, andg6 are determined by the condition

n65g6(
n

e6f̄n2Vn. ~4!

Moreover, the subscript ‘‘m f’’ stands for ‘‘mean field,’’ and
serves to remind us that Poisson–Boltzmann theory consti-
tutes an approximation to the statistical mechanics of the
mobile ion ‘‘gas.’’ In the calculations presented here, we use
fixed boundary conditions with the fieldf set to zero at the
boundary of the allowed region of space.

For each monomer move,dA, i.e., the difference be-
tween the electrostatic free energy of the chain before and
after the trial move, is calculated, and the move is accepted
with probability p51 if dA,0 ~i.e., A is lower in the trial
state than in the initial state!, andp5exp(2bdA) if dA.0.
In other words, we employ the standard Metropolis algo-
rithm. Once a decision is made about whether to accept or
reject the trial configuration, the output configuration is re-
turned to its original location in continuous three dimen-
sional space and the next KJMC move is attempted.

III. CONFIGURATIONAL BIAS MONTE CARLO
METHOD AND THE MULTIGRID TECHNIQUE FOR
SOLVING THE POISSON–BOLTZMANN EQUATION

The strategy of this Monte Carlo method is to first grow
the chains with a biased random walk using the CBMC
approach.20 This step is performed at the linearized pair po-
tential level

vDH~r !

kT
5Z2lB

e2kr

r
. ~5!

HereZ is the monomer charge~in units of the proton charge!,
lB is the Bjerrum length andk is the inverse Debye screen-
ing length, which depends on the electrolyte concentration.
The linearized potential provides a guiding potential for the
construction of the full chain. Then, we numerically solve
the nonlinear PB equation with a multigrid technique~see
below! to obtain a correction to the linearized energy enter-
ing into the Monte Carlo weight. The chain growth process is
efficient and tends to direct the trial configuration into favor-
able regions. The correction factor modifies the trial weight
with a Boltzmann factor resulting from the difference be-
tween the linearized and many-body free energies. One so-
lution of the PB equation is thus required for each trial con-
formation. We emphasize that the simulation is conducted on
the full Poisson–Boltzmann free energy surface and the lin-
earized potential is only used to guide in the rapid growth of
the trial conformation.

The CBMC method is described in detail in Ref. 20. To
summarize, the chain is grown segment by segment, with the
new segment location chosen based on its Boltzmann weight.
The ‘‘local partition function’’ is then computed and the
product of these terms during the growth process yields the
Rosenbluth weightWG8 for the trial conformation. The
Monte Carlo choice is obtained simply from the ratio of the
new and old Rosenbluth weights~in our case modified by the
difference between the linearized energy and the many-body
PB free energy, below!. The CBMC technique is highly ef-
ficient, allowing for simulations of chains with hundreds of
segments. The final Monte Carlo decision process with the
nonlinear correction is
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Pacc~G→G8!5MinS 1,
WG8e

2bDUG8

WGe2bDUG
D , ~6!

where DUG is the difference between the many-body and
pair potential free energies. The majority of the time in this
algorithm is spent in the numerical solution of the PB equa-
tion over the grid domain. In our simulations, we cut the
chains at a random location and regrow the chain from the
point of the cut with the above procedure. The advantages of
the CBMC approach are~1! each regrowth process generates
an independent trial configuration,~2! due to the nature of
the growth process, the simulation efficiently samples large-
amplitude motions, and~3! the PB equation only needs to be
solved once per independent trial conformation.

We numerically solve the PB equation on a lattice using
the full approximation scheme~FAS! MG method. The MG
technique allows for solution of nonlinear problems with
similar efficiency to linear ones, and it scales linearly in
computer time with the system size. Details of our numerical
approach are given in Refs. 14, 21, and 22. In the MG ap-
proach, the desired solution on the fine scale is corrected
following iterations of a modified problem on coarser scales.
These corrections decimate long wavelength components of
the error which eliminates the ‘‘critical slowing down’’ prob-
lem occurring in real space solvers. The result is an algo-
rithm that typically locates the solution in 10–20 lattice
sweeps on the fine scale to within the truncation errors. In
our work, we converged the total free energy to a small frac-
tion of kT ~0.01 kT!.

IV. SIMULATION RESULTS AND DISCUSSION

We have applied the methods described in the previous
sections to the calculation of the mean end-to-end distance,
R, of a charged polymer chain in electrolyte solution. The
chains in our calculations consist of 32 monomers, with a
bond length of 4 Å which is chosen as the unit length in our
plots. The motion of the chain is simulated in a cubic box of
size 333, which is the same as the size of the lattice, that is,
the lattice spacing is one bond length. In the KJMC simula-
tion, after each move the chain is translated to the center of
the box to ensure that it does not reach the end of the box
and thus give rise to spurious edge effects. We have con-
firmed that the end-to-end distances resulting from the simu-
lations of a noncharged chain under the same conditions sat-
isfy all the proper theoretical predictions. Namely, in the case
of no excluded volume interactionsR25(N21), and with
excluded volume interactionsR2>(N21)(6/5) ~with R mea-
sured in units of the bond length!; in the 32 monomer case
considered here,R>7.85 when monomer excluded volume
is ‘‘turned on.’’

The KJ and CBMC procedures considered in this paper
represent the polymer configurations in somewhat different
ways, as noted above. Again, the kink-jump model represents
the polymer as beads connected by rods~in continuous
space!; excluded volume effects are included by giving the
monomer beads a finite radius and disallowing any configu-
rations where the finite-size beads overlap. On the other
hand, the implementation of the CBMC method adopted in
this work grows connected configurations on a cubic lattice.

Excluded volume is enforced by forbidding a growing chain
from visiting any lattice site that is already occupied.

In the long chain limit we expect the fine details of how
equilibrium configurations of the polymer chain are sampled
to become irrelevant, based on general principles such as the
central limit theorem.23 However, for modest length chains
which can be accessed by explicit simulation, some differ-
ences in system properties due to the polymer model are
inevitable. Since we are primarily interested here in electro-
static issues arising from the charge on the polymer chain
and mobile ions in the solvent, we have attempted to gener-
ate the most meaningful comparison of the predictions of our
two models by adjusting model parameters such that the
properties of theuncharged polymer systems agree. Then
electrostatic effects are introduced, and the results obtained
via both models are compared with no further parameter ad-
justment.

In particular, before the polyelectrolyte computations the
two methods were calibrated by adjusting the excluded vol-
ume radius in the continuous kink-jump simulation so that it
produces the same end-to-end distance as the multigrid
CBMC method in the case of noncharged chains. The effec-
tive radius resulting from this calibration, and then used
throughout in the kink-jump simulations, was 0.34 bond
lengths.

In Fig. 1 we show the dependence ofR on the Debye
length for the case of a chain with monomer charge 0.25~in

FIG. 1. The end-to-end distanceR as a function of Debye length, both in
units of bond length~4 Å!, for a chain of 32 monomers, each having a
charge of 0.25~in units of the proton charge!. The Debye lengths are aver-
aged over the course of the simulation, and, in decreasing order, correspond
to one, 20, 40, and 70 monovalent impurity ion pairs plus the appropriate
number of monovalent negative counterions needed for electroneutrality of
the solution; see text for further details.~The error bars for the Debye
lengths, as well as for the Debye–Hu¨ckel results, are negligible and are,
therefore, not shown.! The swelling of the chains due to the electrostatic
repulsion between the charged monomers is evident, in comparison to the
uncharged case for whichR>7.85. In the legend ‘‘kj’’ stands for results of
the KJMC method, ‘‘mg’’ stands for the results of the multigrid CBMC
techniques, ‘‘PB’’ stands for Poisson–Boltzmann, and ‘‘DH’’ stands for
Debye–Hu¨ckel.
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units of the proton charge!. To achieve different Debye
lengths, an appropriate number of monovalent impurity ion
pairs was added into the solvent portion of the simulation
box. ~In addition, the number of monovalent negative coun-
terions needed to neutralize the positive charge on the poly-
mer chain was added to the solvent; in Fig. 1, this amounted
to 3230.2558 such counterions.! Figures 2 and 3 present the
corresponding results forR in the cases of monomer charge
0.50 and 0.75, respectively. Note that monomer charges 0.25,

0.50, and 0.75 correspond to 15.5, 7.75, and 5.17 Å between
charges if we had put unit charges on the chain. The onset of
condensation occurs at a chain charge density of one~proton!
charge every 7.12 Å, so this set of figures shows how we
approach and exceed that threshold. Both the KJMC and the
multigrid CBMC simulations were performed for a water
solution with a dielectric constante578. Each figure shows
KJMC and CBMC results based on an electrostatic free en-
ergy calculated at the PB level. For comparison, analogous
results obtained by approximating the electrostatic free en-
ergy as a sum of Debye–Hu¨ckel pair potentials are also dis-
played.

In the case of small monomer charge, Fig. 1, we observe
practically coinciding results from the multigrid CBMC
simulation and both Debye–Hu¨ckel simulations, while the
end-to-end distances resulting from the KJMC PB simulation
are somewhat shorter. We believe this difference is due to an
artifact of the ~different! lattices used in the two types of
calculation. Fortunately, the discrepancies do not exceed
;10% between corresponding KJMC and CMBC results in
any of the figures, despite the relatively coarse lattices uti-
lized to produce them. In Figs. 2 and 3, as the monomer
charge increases, we observe a deviation between the
Poisson–Boltzmann and the Debye–Hu¨ckel results, which is
most obvious in Fig. 3, where the monomers have the rela-
tively large charge of 0.75. In that case, the two PB simula-
tions agree well with each other, perhaps because the chains
are stretched due to the stronger intermonomer repulsion,
making the more folded configurations less likely, and di-
minishing the effect of the lattice artifacts mentioned above.
In Fig. 3 we also show via unfilled triangles~DH-REN! re-
sults based on a CBMC DH-level calculation in which the
charge on the monomers has been renormalized to a value of
1 proton charge per 7.12 Å. According to Manning counter-
ion condensation theory,12 for chain charge densities exceed-
ing this critical value, some counterions from the surround-
ing liquid condense onto the chain so as to reduce the
effective polymer charge density to the critical value. The
results obtained here are consistent with such a mechanism.

For the KJMC simulations we define 32 monomer
moves ~simulation steps!, which on average correspond to
one move per each monomer in the chain, as one simulation
sweep. The number of simulation sweeps for the results pre-
sented here was between 120 000 and 180 000 per calcula-
tion. After computing the PB free energy on the lattice, we
saved the old electrostatic field and used it as a starting field
for the next computation. This significantly reduced the com-
putation time, since in the kink-jump simulations we move
only one monomer at a time, so that the new electrostatic
field is only slightly perturbed from the old one. Thus, after
the first PB computation on the lattice, we only needed be-
tween one and five iterations to find the new PB free energy
within the same predetermined precision@based on the re-
sidual of the numerical solution of Eq.~1!#. For the CBMC
PB simulations, the polymer chain was regrown 20 000 times
in each run. In both the KJMC and the CBMC DH simula-
tions 106 sweeps were performed.

FIG. 2. Same as Fig. 1 for monomer charge 0.50. The Debye lengths, in
decreasing order, correspond to one, 20, 50, and 70 monovalent impurity ion
pairs.

FIG. 3. Same as Fig. 1 for monomer charge 0.75. The Debye lengths, in
decreasing order, correspond to one, ten, 20, and 30 monovalent impurity
ion pairs. DH-REN indicates results of a simulation based on a Debye–
Hückel pair potential with renormalized monomer charge; see text for de-
tails. ~It should be noted that the results for kj-PB and DH-REN in the case
of 30 monovalent impurity ions are nearly coincident.!
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V. DISCUSSION AND CONCLUSIONS

We have estimated that for the calculations presented
here, the multigrid CBMC method is about 34 times more
efficient than the kink-jump Monte Carlo method in terms of
computational speed. A significant fraction of this speed-up
can be attributed to use of a multigrid PB solver in the
CBMC calculations. Such a solver can and should be imple-
mented into further investigations of polyelectrolyte kinetics
and statistical mechanics via the KJMC method. The latter
method remains of interest, since it can be used to study
nonequilibrium problems, e.g., in the area of biopolymer
dynamics.24 We expect that using a finer lattice in the simu-
lations would alleviate the lattice artifacts encountered in the
calculations presented here and would thus yield even better
agreement between the two simulation techniques. The con-
stantly improving capacities of modern computers will un-
doubtedly allow significantly finer lattices to be employed in
the near future, thus enhancing the capability of both KJMC
and CBMC techniques for dealing with a wide variety of
problems involving polyelectrolyte solutions.
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15A. Baumgärtner and K. Binder, J. Chem. Phys.71, 2541~1979!.
16S. Tsonchev, R. D. Coalson, S.-S. Chern, and A. Duncan, J. Chem. Phys.

113, 8381~2000!.
17R. D. Coalson and A. Duncan, J. Chem. Phys.97, 5653~1992!.
18W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Nu-

merical Recipes in C: The Art of Scientific Computing~Cambridge Uni-
versity Press, Cambridge, 1992!.

19S. Tsonchev, R. D. Coalson, and A. Duncan, Phys. Rev. E60, 4257~1999!.
20D. Frenkel, G. C. A. M. Mooij, and B. Smith, J. Phys.: Condens. Matter4,

3053 ~1992!.
21A. Brandt, Math. Comput.31, 333 ~1977!.
22T. L. Beck, Int. J. Quantum Chem.65, 477 ~1997!.
23Y. A. Rozanov,Probability Theory: A Concise Course~Dover, New York,

1969!.
24T. Ambjörnsson, S. P. Apell, Z. Konkoli, E. A. Di Marzio, and J. J. Ka-

sianowicz, J. Chem. Phys.117, 4063~2002!; M. Muthukumar,ibid. 118,
5174 ~2003!.

9821J. Chem. Phys., Vol. 120, No. 20, 22 May 2004 Flexible polyelectrolyte simulations

Downloaded 06 May 2004 to 129.105.55.28. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


