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Simulations of ion permeation through narrow model cylindrical channels are carried out using a dynamic
lattice Monte Carlo (DLMC) algorithm (equivalent to high friction Langevin dynamics) for the time evolution
of the ions in the system on the basis of a careful evaluation of the electrostatic forces acting upon each
particle. To mimic the process of ion transport through protein channels, the cylindrical channel is embedded
in a dielectric slab (representing a lipid bilayer membrane). The protein/membrane structure is taken to be
rigid, and the water solvent is treated as a dielectric continuum. Results of these simulations are compared to
corresponding results obtained via Poisson-Nernst-Planck (PNP) theory. In the PNP approach, the mobile
ions are treated as a continuous charge density, and the electrostatic force on each ion is treated in an
approximate fashion. Significant differences between DLMC and PNP results are found, with the degree of
discrepancy increasing as the radius of the ion channel is reduced. A major source of error is traced to the
neglect in the effective PNP potential of the dielectric self-energy (DSE), which is due to the interaction of
each permeant ion with the dielectrically inhomogeneous environment provided by the water/channel/membrane
system. When this static single-particle potential is precalculated and added to the effective potential used in
PNP theory, substantial improvement in the quality of the results for current-voltage curves and steady-state
concentrations is obtained. In fact, the results obtained by this approach, termed dielectric self-energy Poisson-
Nernst-Planck (DSEPNP) theory, agree nearly quantitatively with DLMC simulation results over the entire
range of channel radii (4-12 Å) studied.

1. Introduction

Recently, several groups have carried out Brownian dynamics
(BD) or dynamic lattice Monte Carlo (DLMC) simulations to
calculate currents through biological channels via a physically
realistic model in which permeant ions are represented as hard
spheres with an embedded electric charge.1-11 One important
goal of these studies has been to elucidate the behavior of ion
kinetics through narrow ion channels (several angstroms in
radius), which have significant biological relevance (e.g., as
selectivity filters). In such narrow ion channels, these calcula-
tions predict very small superlinear currents for voltages up to
200 mV. Curiously, the computedI-V curves4,12do not closely
resemble those measured experimentally,13,14which are typically
linear or sublinear rather than superlinear in shape and much
larger in magnitude. Also curious is the fact that in many cases
a cruder model of ion permeation known as Poisson-Nernst-
Planck (PNP) theory, in which the ions are treated as a
continuous charge density and ion-ion interactions are treated
within a mean-field approximation, predicts qualitatively rea-
sonable ion currents through narrow biological ion channels.15-20

Particle-based Brownian dynamics models are clearly more
realistic than the continuum/mean-field PNP theory in several
respects. In BD models, the ions have a finite size and thus are
forced to traverse a narrow channel (e.g., gramicidin21 or the
KcsA channel22) in essentially single-file fashion. Furthermore,

all ion-ion interactions are computed accurately (within the
model of a rigid protein, dielectric continuum representation of
the solvent, etc.) at each instant of time. Thus, the many-body
nature of the ionic motion is properly described. Basic PNP
theory, on the other hand, describes mobile ionic charge by a
continuous distribution, effectively regarding the individual
carriers as infinitesimal in charge (as well as in size) and infinite
in number, taking only the charge density as given. Furthermore,
it is implicitly assumed in PNP theory that the steady-state ion
concentration profile is characterized by negligible spatio-
temporal fluctuations so that each ion “sees” a static charge
distribution due to the other ions-that is, a mean-field approx-
imation is adopted in order to treat mobile ion-ion interactions.

Despite the additional realism in Brownian dynamics-type
calculations, they are at present still far from being ab initio.
There are several significant approximations inherent in this
approach as it is most often implemented at present. First, the
protein (and lipid bilayer) are considered to be static objects,
whereas they are in fact dynamical. They undergo fluctuations
on a picosecond time scale, which is much more rapid than the
time scale for ion permeation (several nanoseconds or longer).
Thus, protein atoms can relax instantaneously around the ion
as it moves through the channel, and this conformational
“polarization” can stabilize the permeant ion by minimizing
strong short-range electrostatic interactions between the ion and
nearby protein atoms. Furthermore, the solvent (i.e., water) is
treated as a dielectric continuum in BD simulations. Because a
water molecule is approximately the same size as a K+ or Cl-

ion, the separation of time/distance scales implicit in a model
of Brownian motion (in which the ion is the “Brownian particle”
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and the water is the “source of thermal buffeting”) is not fully
justified. These issues are exacerbated when a few water
molecules and a few ions are confined to a narrow ion channel.
Of course, the same assumptions, namely, treating the protein
as a static object and the water solvent as a dielectric continuum,
plague the continuum PNP theory as well.

Recent work23 suggests that two competing effects, both left
out of standard PNP theory, compensate each other and in some
cases approximately cancel out, thus explaining why standard
PNP calculations are often “unjustifiably” successful in repro-
ducing experimental data. One effect is the dielectric self-energy
(i.e., the electrostatic energy of a single mobile ion moving in
a dielectrically inhomogeneous environment24). In particular,
when an ion enters the aqueous pore of the protein channel, it
is surrounded “on the sides” by the low-dielectric environment
of the surrounding protein/membrane. Thus, the electrostatic
energy increases as the ion goes further into the channel
(maximizing when the ion is “most buried”, i.e., halfway through
the pore). The magnitude of this dielectric barrier can be quite
significantsthe narrower the ion channel, the greater the effect.
For gramicidin (radius of ca. 2Å), the dielectric barrier for a
monovalent ion is∼20 kT.23 In the absence of some compensat-
ing stabilizing mechanism, no ions would flow through this
channel, which contradicts the experimental reality that grami-
cidin passes millions of cations per second under physiologically
relevant conditions. The effect of dielectric self-energy on ion
permeation has been recognized and extensively discussed in
earlier ion-channel literature, even though the three-dimensional
structure of actual protein pores was in general not known at
the time.25-33 One potentially compensating mechanism is the
relaxation of the protein channel itself around the ion as it passes
through the pore. As noted above, this protein stabilization,
which involves small (sub-angstrom) shifts in the position of
nearby protein atoms, can occur on a picosecond time scale
and via slight movement of partial charges on the protein provide
significant electrostatic stabilization. Physically, this distortion
of the protein atoms closely resembles the mechanism by which
the atomic lattice of a crystal distorts to stabilize a free electron
moving through it (i.e., polaron formation34).

The above scenario is complex, and it is thus important to
decompose it into component contributions and analyze each
of these carefully. In this paper, we adopt the “standard” model
of ion permeation through a protein channel, namely, one in
which the protein itself (as well as the lipid bilayer membrane
in which it sits) is represented as a rigid dielectric slab
characterized by a low dielectric constant and pocked with point
charges embedded at various locations to represent (partial)
charges in the protein/membrane. Furthermore, the water solvent
is treated as a permeable dielectric medium characterized by a
dielectric constant and an appropriate viscosity. Within this
model, we carry out accurate DLMC simulations based on the
instantaneous force on each ion, taking into account all
electrostatic interactions. The results of these calculations serve
as a benchmark against which to test standard PNP theory and
variants on the PNP theme. Indeed, we find that standard PNP
calculations deviate significantly from the DLMC resultssthe
disagreement becomes worse as the radius of the ion channel
becomes narrower. We trace the disagreement to the neglect of
the DSE in standard PNP theory. Furthermore, we find that by
“putting in” the DSE energy function as an additional single-
particle potential in the PNP equations (an approximation that
will be termed DSEPNP) the agreement with DLMC simulations
improves dramatically, becoming nearly quantitative over the
entire range of ion channel radii studied (from 4 to 12 Å).

The outline of the paper is as follows. To set the stage, we
briefly review the structure of standard PNP theory in section
2, and in Section 3, we describe a simple procedure for
incorporating the DSE into PNP (i.e., DSEPNP). Our reasoning
here closely follows that of Schuss et al.35 Our DLMC algorithm
is outlined in section 4. In section 5, we compare the results of
PNP and DSEPNP with our DLMC simulation data. The paper
concludes, in section 6, with a discussion of our findings.

2. Continuum Models: PNP Theory

At the simplest level of the theory of drift diffusion in an
inhomogeneous environment such as an ion channel, the mobile
ions are treated as a continuous distribution. The concentrations
of these ions are therefore described by a set of partial
differential equations, termed drift-diffusion or Nernst-Planck
(NP) equations, one for each ionic species. In particular, the
local flux jbI is given by

where cI is the concentration of speciesI andqI is the charge
on an ion of this type. Furthermore,ψI is an appropriate effective
potential energy experienced by each particle of speciesI, DI

is the diffusion constant (possibly position-dependent) for this
species, andâ ) (kT)-1, k being Boltzmann’s constant andT
the absolute temperature. The time evolution is then given in
general by the continuity equation36 ∂cI/∂t ) -diV( jbI). Here
we are primarily interested in the steady-state profile satisfying
diV( jbI) ) 0, which constitutes the NP equation for speciesI.

The details of ψ obviously play a critical role in this
description. Most properly,ψI(rb) should be thought of as a
potential of mean force36 for a single mobile ion of speciesI
because this generates a Boltzmann distribution [proportional
to exp(-âψI(rb))] in the case of a zero-flux steady state
corresponding to thermal equilibrium. Of course,ψI(rb) depends
on a complicated average over all mobile ions in the system.
Thus, it is natural to seek simplified approximations to this free-
energy function. The simplest plausible approximation follows
upon considering contributions to the force on a typical mobile
particle including the electric fields produced by all other
charges in the system, plus impenetrable hard walls of the pore/
membrane structure. We may distinguish three types of free
charges in the system: mobile ions, immobile (partial) charges
embedded in the protein/membrane, and charges on the distant
capacitor plates of the probing electrodes. The electric field of
the fixed ions is easily calculated (including effects of dielectric
inhomogeneity). The electric field from the charges in the
external capacitor plates can be subsumed into a solution of
the Laplace equation with boundary conditions that enforce fixed
electric potential values on the capacitor plates. This leaves the
mobile charges. The force on a test ion due to the other mobile
ions in the system depends on the instantaneous configuration
of all mobile particles. As a crude approximation, we can assume
that the number density of mobile ions at each point in space is
frozen at its steady state (average) value (further subtleties in
this reasoning are discussed below) and calculate the electric
field at positionrb due to the corresponding steady-state charge
distribution. The sum of all of the electrostatic forces can be
obtained from the gradient of the electric potential field that
satisfies the following Poisson equation:

- jbI ( rb) ) DI ( rb)[∂cI ( rb)

∂ rb
+ âcI ( rb)

∂ψI ( rb)

∂ rb ] (1)

∇B‚(ε( rb)∇Bφ( rb)) ) -4π(Ff( rb) + ∑
I

qI cI ( rb)) (2)
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whereFf(rb) is the density of immobile charges in the system
(i.e., partial charges on the lipid bilayer membrane and the
protein molecule). The appropriate boundary condition on the
surface of the “computational box” is a fixed surface potential
that incorporates the potential difference across the membrane
supplied by the electrodes. Then, for each species of mobile
ion there is one Nernst-Planck equation (eq 1 above withψI

f qIφ). The boundary conditions on each NP equation enforce
the bulk concentrations in the bathing solutions on either side
of the membrane. For internal boundary surfaces (e.g., the
surface of the membrane and the inner walls of the protein),
zero-flux boundary conditions are utilized. This set of NP
equations (cf. eq 1), one for each ionic species, plus one Poisson
equation (eq 2) constitutes a nonlinear set of partial differen-
tial equation that are the embodiment of standard PNP
theory.15-20,37

3. Dielectric Self-Energy Poisson-Nernst-Planck
(DSEPNP) Theory

When an ion moves through a dielectrically inhomogeneous
medium, it experiences a force due to the variation of the
dielectric self-energy (DSE) with the position of the ion. In
particular, the DSE of an ion increases as it moves from the
bulk solvent, where it is surrounded by a high-dielectric medium
(water), to the inside of a narrow ion channel, where it is
surrounded by a low-dielectric medium (the protein/membrane
system). Note that this force persists even in the absence of
any other free charges in the system. If there areN charges in
total and we are interested in the net force on thenth charge
without (for the moment) any applied external electric potential,
then the analysis performed in Appendix 1 shows that this
force is the negative of the gradient of the following energy
function:

In this expression,g(RBn,RBj) is the potential generated at point
RBn by a unit source charge atRBj, subject to the boundary
condition thatg f 0 far fromRBj. Thus, the first term accounts
for the electric field at pointRBn generated by the otherN - 1
point charges (mobile and immobile charges enter on the same
footing here). The second term is the DSE, which varies with
position in a dielectrically inhomogeneous medium, thus giving
rise to a nonzero force on ionn.

As noted above, the electric field contributed by external
electrodes can be obtained by solving the Laplace equation with
appropriate “fixed potential” boundary conditions and then
differentiating the resultant electric potential field. Hence, the
force on particlen due to all other free charges in the system
plus the applied electric field from external capacitors (elec-
trodes) can be obtained by differentiating the scalar potential
field æ0 computed from asinglePoisson equation, namely,

subject to the boundary condition thatφ0(rb) ) φbc(rb) on the
system boundaries.

To this must be added the force due to the spatial variation
of the DSE. The net force on particlen (including the electric
field from the external electrodes, the fields generated by all
other free charges in the system, and the DSE) is thus given as

the negative of the gradient of the following potential energy
function:

with

This expression is exact, but if there are mobile free charges
(ions) in the system, it depends on the instantaneous configu-
ration of all ions except the “test” ionn. Thus, one must
reevaluate it every time a particle is moved (as in DLMC
simulations) or else approximate it as a functional of an average
mobile ion density (as in PNP theory). To do the latter, it is
useful to specialize to the case that there areNm mobile ions
andNf fixed charges (cf. Figure 1). Then

where

and

(The summation that determinesFm includes allNm mobile
charges except thenth charge.) Clearly, in eq 6,Ff(RBn) is an
externally prescribed charge distribution, andFm(RBn) depends
on the instantaneous configuration of all mobile ions. It is the
latter term that requires further attention. The approximation
sequence that is necessary to obtain a tractable mean-field theory
is

whereFjm is the average net charge density profile

thus yielding a closed set of equations for the species concentra-
tions.

Essentially, we have just sketched the “derivation” of classical
PNP theory, warts and all. The new development is the
identification of an additional single-particle potential, the
dielectric self-energy (DSE), which does not appear in traditional
PNP discussions. Because this really is a static single-particle
potential, it can be added to the effective potential utilized in
the NP part of the PNP equations.

For clarity, we summarize here the final modified DSEPNP
prescription: The concentration profile of each ion speciesI
satisfies a Nernst-Planck equation

The effective potential seen by each ion species is

ε(RBn) ) qn∑
j*n

qj g(RBn,RBj) +
1

2
qn

2g(RBn,RBn) (3)

∇B‚(ε( rb)∇Bæ0( rb)) ) -4π∑
j*n

qj δ( rb - RBj)

ψ ) qnφ0(RBn) + εDSE(RBn) (4)

εDSE(RBn) ) 1
2

qn
2g(RBn,RBn)

∑
j*n

qj δ(RBn - RBj) ) Ff (RBn) + Fm(RBn) (5)

Ff (RBn) ≡ ∑
k)1

Nf

qk δ(RBn - RBk) (6a)

Fm(RBn) ≡ ∑
j*n

qj δ(RBn - RBj) (6b)

Fm(RBn) f 〈∑
j*n

qj δ(RBn - RBj)〉 f 〈∑
j)1

N

qj δ(RBn - RBj)〉 ≡ Fjm(RBn)

(7)

Fjm( rb) ) ∑
I

qI cI ( rb) (8)

0 ) ∇B‚{DI ( rb)[∇BcI ( rb) + âcI ( rb)∇Bψeff,I ( rb)]} (9)

ψeff,I ( rb) ) qI φ( rb) + εDSE,I ( rb) (10)
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Here,φ is the solution to the Poisson equation:

with the fixed charge densityFf given in eq 6a, the net mobile
ion charge densityFjm given in eq 8, and the boundary condition
φ(rb) ) φbc(rb) on the various bounding surfaces of the simulation
box. Furthermore, the dielectric self-energy function for ion
speciesI is given by

The NP equations for all species (cf. eq 9) and the Poisson
equation (eq 11) must then be solved to self-consistency.

The above arguments are similar to the ones used in the
discussion of the replacement of conditional by unconditional
charge densities in ref 35. Our presentation emphasizes that the
effective potential that determines the force on an ion due to
the induction of surface charge in a dielectrically inhomogeneous
medium is given as the negative gradient of the DSE potential
defined herein (i.e.,ε

DSE,I
(rb) ) (1/2)qI

2g(rb,rb). Its inclusion is
consistent with the way in which we perform our DLMC
simulations (see section 4) and also with the way in which free
energies of solvation are typically computed in continuum
solvent models (cf. ref 38). Note that in order to make one
dynamical move in our DLMC algorithm we need to evaluate
the electrostatic energy of the system twice: before and after a
trial move of the particle is attempted. Thus, formally we must
solve the Poisson equation for the electric potential generated
by an (ionic) point source two times in order to calculate the
DSE contribution to the relevant energetics. [In practice, these
DSE evaluations can be precalculated and stored on the
computational grid (cf. section 4).] Even in the absence of any
other source charges in the system, mobile or immobile, a
reevaluation of the DSE in this manner is required. In essence,
the difference between the DSE at initial and trial-move
positions of the ion (divided by the separation between these
positions) gives the instantaneous force exerted on the ion by
the induced charges at the dielectric boundaries. In the formula-
tion of Schuss et al.,35 a different prescription for this dielectric
boundary force is given. In particular, it is obtained from a single
solution of the Poisson equation for a point source charge at
the initial (“current”) position of the ion. From the resultant
electric potential profile, the dielectric boundary force is
extracted (by evaluating the gradient of this potential in an
appropriate manner). Although it may not be immediately
obvious that the two prescriptions give the same force, in fact
they do: a simple equivalence proof is provided in Appendix
2. Which prescription is employed in a given calculation is a
matter of convenience and computational efficiency.

In concluding this section, note that in the limit where a
continuous charge distribution is obtained by reducing the charge
per mobile particle and increasing the number of mobile particles
concomitantly (such that the charge density remains constant)
the DSE effect becomes negligible. The DSE scales as the square
of the charge on a single mobile particle, and this charge tends
to zero in the limit process just described. Thus, DSEPNP theory
reduces to standard PNP theory in this limit.

4. Dynamic Monte Carlo Simulations

The details of the DLMC procedure used here were thor-
oughly described in previous work.4 In this method, the system
of particles evolves in time according to the transition probability

algorithm often used in dynamic Ising model simulations.39

Given a current configuration 1 and a random trial configuration
2, the criterion for choosing the next configuration as 2 or 1
depends on the energy difference∆W between these configura-
tions. A uniform random deviate 0e r < 1 is generated. If

then the next configuration is taken to be 2. Otherwise, the
current configuration 1 is carried over. The energy of the system
was calculated as the following sum:

where each energy term is defined below. The details of how
various energy contributions are calculated are described
elsewhere.4 The first term (the sums below are over all ions in
the computational box)

is the energy of individual ions in the local electrostatic field
arising from static charges and from the source of the imposed
(Dirichlet) boundary condition. Next, the term

is the self-energy (or solvation energy) of individual ions in
the inhomogeneous dielectric environment.

Turning to the ion-ion interaction, it is convenient to separate
it into two terms. The first

is due to the direct Coulombic interaction between pair of ions
in a reference homogeneous dielectric environment with di-
electric constantεB. A second term

is the energy resulting from pair of ions interacting via
polarization charges induced at internal dielectric interfaces.

is a correction to the solvation energy that accounts for the
effects of ions outside the inner (primary) system.

The simulation procedure was implemented on a lattice as
described in ref 4 where each mobile ion can occupy one lattice
cell. The total simulation timeTS is related to the total number
of Monte Carlo cyclesNC as

whereh is the grid spacing andD is the diffusion coefficient of
a single ion moving in the dielectric environment. The latter is
taken to be the same for all mobile ions and is assumed to be

∇B‚(ε( rb)∇Bφ( rb)) ) -4π[Ff ( rb) + Fjm( rb)] (11)

εDSE,I ( rb) ) 1
2

qI
2g( rb,rb) (12)

r < 1
1 + exp[â∆W]

(13)

W ) Wstat+ Wself + Wcoul + Wdiel + Wcorr (14)

Wstat) ∑
j

qj φj
stat (15)

Wself ) ∑
j

qj
2

2
φj

self (16)

Wcoul )
1

2
∑
i*j

qi qj

εB

φ
coul(rij) (17)

Wdiel )
1

2
∑
i*j

qi qj φirj
diel (18)

Wcorr ) ∑
j

〈Φj
corr〉 (19)

TS )
h2NC

12D
(20)
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known. D ) 10-5 cm2/s was used in all the calculations
presented in this work.44

A cycle is defined to consist ofÑ steps withÑ ) N + NV. N
is the number of ions in the system, which may fluctuate with
time. The total number of particles must, however, be kept
constant to ensure the consistent accounting of time; therefore,
the number of virtual particlesNV > 0 is chosen such thatÑ is
a constant.

5. Comparison of DLMC Simulations versus PNP and
DSEPNP Calculations on a Model 3D Ion-Channel
System

We consider a 3D model ion-channel/membrane system
depicted schematically in Figure 1. The protein channel is
represented as a cylinder of specified radius and length. This
cylinder spans a dielectric slab, which approximates a lipid
bilayer, in a perpendicular fashion. The cylinder is lined with
two layers of charge: an inner layer (closest to the aqueous
pore) of total charge-1.5e, which is surrounded by a second
layer of total charge 1.5e. These charge distributions mimic the
arrangement of polar groups that line cationic channels. For
example, in gramicidin, carbonyl groups from the peptide
backbone are oriented along the aqueous pore region, with the
(electronegative) oxygen atom of each carbonyl group pointing
inward. The model adopted here is not intended to represent
precisely the gramicidin protein channel, but the presence of a
layer of negative charge on the innermost lining of the channel
contributes significantly to the mechanism by which cations are
drawn into and ultimately passed through it, so it is important
to include this feature in our idealized channel model.

The channel/membrane/water system under study is dielec-
trically inhomogeneous. Roughly, the water is a high-dielectric
medium (εw ) 80), and the protein/membrane complex, being
composed largely of low-polarizability alkane chains and other
organic moieties, is a low-dielectric medium (εm ) 2). In reality,
the situation is more complicated. Whereas bulk water is indeed
characterized by a static dielectric constant of 80, the appropriate
dielectric constant in the pore interior is not known experimen-
tally. Given the highly confined geometry associated with
narrow ion channels (less than 5 Å in radius), the invocation of
a dielectric continuum description of the water in the channel
is itself questionable. Ignoring this potential dilemma, the precise
value for the dielectric constant of water in the interior of the
channel remains an issue. Presumably, it is lower than the bulk
value because the ability of the confined water to rotate is
restricted and hence its rotational polarizability is reduced.
Furthermore, whereas the dielectric constant of the alkane chain-
dominated lipid layer is probably well represented by a dielectric

constant of ca. 2, the value of the appropriate dielectric constant
for the protein is less certain. Various flexible polar groups in
the protein suggest a polarizability that may put the dielectric
constant of the protein in the range of 2-10.40,41Despite all of
these complications, in this work we have chosen to use the
dielectric constantεw ) 80 for both bulk and channel-confined
water and the valueεm ) 2 everywhere else. With such
parameter choices (which are often considered as standard in
the field of biomolecular simulations; see the extensive discus-
sion in ref 23), the effect of the dielectric barrier on ion dynamics
in the channel is expected to be significant.

The membrane thickness (and channel length) was taken to
be 24 Å, consistent with typical lipid bilayer membrane
thicknesses. Bulk 1:1 electrolyte concentrations of 0.1 M were
adopted throughout. Three values of the radius of the cylinder
representing the interior of the channel protein were considered,
namely,R ) 4, 7.5, and 12 Å.

All calculations presented below that require solving the
Poisson equation (i.e., an evaluation of the electrostatic potential
in both PNP and DLMC methods as well as an evaluation of
the DSE potential for a single ion) or the Nernst-Planck
equations were performed on a cubic lattice with 2-Å spacing

Figure 1. Two-dimensional cross section of the 3D DLMC simulation
box depicting an assembly of free charges in a dielectrically inhomo-
geneous medium. Note that some free charges (encircled) are mobile
and that others (in the dielectric region withεm) are fixed in space.

Figure 2. Comparison of current-voltage characteristics calculated
for the ion channel shown in Figure 1 via DLMC (filled symbols) and
DSEPNP (open symbols) methods for channel radii of (a) 0.4 nm, (b)
0.75 nm, and (c)) 1.2 nm. The choice of dielectric constants, fixed
charge distributions, boundary positions and other parameters is as
outlined in Figure 1 and described in the text for all three channels
studied and remains the same for all results presented in this paper.
Note that positive voltage corresponds toφL - φR > 0.
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between adjacent grid points. This choice also defined the size
of an ion in the DLMC simulations. The charge discretization
procedure on the lattice has been described in detail in ref 4.

In Figure 2, we show for each of these cylinder radii (R ) 4,
7.5, and 12 Å in panels a, b, and c, respectively) current-voltage
(I-V) curves obtained via DLMC simulations and compare these

to the predictions of DSEPNP theory. The agreement is good
for all three channel radii. To quantify this claim, we show in
Figure 3a the ratio of DSEPNP/DLMC currents as a function
of applied voltage. Generally, the error is less than 20% (with
slightly larger deviations at low voltages in the narrowest
channel,R ) 4 Å). The performance of standard PNP is
dramatically worse than this, particularly for theR ) 4 Å
channel, as is shown in Figure 3b. PNP significantly overesti-
mates the current flow relative to DLMC, with striking
deviations of nearly a factor of 50 for theR ) 4 Å channel at
low voltages due primarily to its neglect of the DSE contribution
to the free energy experienced by a permeating ion. For channel
radii of 7.5 and 12 Å, the deviation of PNP from DLMC is
more modest. To emphasize this, we replot relevant data curves
from Figure 3 in Figure 4. As expected, the agreement of PNP
with DLMC improves systematically with increasing channel
radius: for the 12-Å channel, the error is only a factor of 2.

It is also instructive to examine the steady-state concentration
distributions of the mobile ions in the channel. In Figure 5, we
show for theR ) 4 Å channel the cation (Figure 5a) and anion
(Figure 5b) concentrations along the channel axis.45 As is readily
apparent, the PNP curves bear little correspondence to their

Figure 3. (a) Ratio of DSEPNP/DLMC currents as a function of
voltage for three channel radii: 0.4 nm (triangles), 0.75 nm (squares),
and 1.2 nm (circles). (b) Ratio of PNP/DLMC currents for the same
channels: 0.4 nm (triangles), 0.75 nm (squares), and 1.2 nm (circles).

Figure 4. (a) Ratio of PNP/DLMC current (filled squares) and
DSEPNP/DLMC current (open squares) as a function of voltage for
channel radiusR ) 0.75 nm. (b) Ratio of PNP/DLMC current (filled
circles) and DSEPNP/DLMC current (open circles) as a function of
voltage for channel radiusR ) 1.2 nm.

Figure 5. Mobile ion concentrations calculated by DLMC, DSEPNP,
and PNP plotted for theR ) 0.4 nm channel at an applied voltage of
0.3 V and a 0.1 M reservoir concentration of salt. Filled symbols are
for cations; open symbols are for anions. Circles show DLMC results,
squares, DSEPNP results, and triangles, PNP results: (a) positive mobile
ion concentration along the (channel)zaxis (x ) 0, y ) 0); (b) negative
mobile ion concentration along thezaxis; (c) mobile ion concentration
along the (transverse)x axis at the center of the channel (z ) 0, y )
0).
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DLMC analogues. However, the results of the DSEPNP
calculation are in very good agreement with the DLMC
simulation results. Figure 5c shows a lateral slice of the cation
and anion densities through the center of the same channel.
Again, PNP deviates substantially from DLMC, but DSEPNP
results agree very well with DLMC. This cross-sectional view
also shows clearly that the DSE potential is higher near the
walls of the channel, thus preventing mobile ion density from
accumulating there in the DLMC and DSEPNP calculations.
Because the DSE is neglected in standard PNP, this effect is
absent in the PNP concentration profiles, which extend almost
uniformly in the lateral direction up to the channel walls. In
Figure 6, we show the corresponding results for theR ) 7.5 Å
channel, and in Figure 7, results forR ) 12 Å are presented.
The same general comments apply as for theR ) 4 Å channel
case described above. As the channel gets wider, the PNP results
become somewhat better, although certain artifacts of the neglect
of DSE remain noticeable, for example, the nearly step-function
nature of the PNP profile in the lateral direction.

6. Discussion and Conclusions

In this paper, we have studied ion permeation through
biological channels within the “standard model”, in which the
channel is rigid, water is treated as a dielectric continuum, and
the mobile ions are treated as charged spherical particles that
execute Brownian motion (based on thermally driven buffeting
by implicit solvent molecules). We performed dynamical Monte
Carlo simulations (equivalent to Langevin dynamics at high
friction) for channels ranging in radius from 4 to 12 Å. Current-
voltage curves and ion concentration profiles were extracted
for three channels, ranging in radius from 4 to 12 Å. These
results were compared to corresponding results obtained from
Poisson-Nernst-Planck (PNP) theory, in which the permeant
ions are treated as a continuous charge density and the force
on each ion is assumed to be static and is computed within
standard mean-field theory approximations. We found, in
agreement with previous calculations,4,42 that PNP greatly
overestimates the ion current through narrow channels, with the
discrepancy increasing for narrower channels. The origin of this
discrepancy was traced in large part to a force associated with
the dielectric self-energy, which arises from the interaction of
an ion with charges it induces on the dielectric boundaries. This

Figure 6. Mobile ion concentrations calculated by DLMC, DSEPNP,
and PNP plotted for theR ) 0.75 nm channel at an applied voltage of
0.3 V and a 0.1 M reservoir concentration of salt. Filled symbols are
for cations; open symbols are for anions. Circles show DLMC results,
squares, DSEPNP results, and triangles, PNP results: (a) positive mobile
ion concentration along the (channel)zaxis (x ) 0, y ) 0); (b) negative
mobile ion concentration along thezaxis; (c) mobile ion concentration
along the (transverse)x axis at the center of the channel (z ) 0, y )
0).

Figure 7. Mobile ion concentrations calculated by DLMC, DSEPNP,
and PNP plotted for theR ) 1.2 nm channel at an applied voltage of
0.3 V and a 0.1 M reservoir concentration of salt. Filled symbols are
for cations; open symbols are for anions. Circles show DLMC results,
squares, DSEPNP results, and triangles, PNP results: (a) positive mobile
ion concentration along the (channel)zaxis (x ) 0, y ) 0); (b) negative
mobile ion concentration along thezaxis; (c) mobile ion concentration
along the (transverse)x axis at the center of the channel (z ) 0, y )
0).
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force is properly included in the DLMC computation but is
ignored in simple PNP theory. The DSEPNP model, which takes
this single ion force into account within the general framework
of the PNP theory, yieldsI-V curves and concentration profiles
in nearly quantitative agreement with the corresponding DLMC
simulation results for all radii studied. This suggests that other
effects that are beyond the province of PNP theory (e.g.,
(mobile) ion-ion correlations and single-file ion queuing
kinetics) affect theI-V curves to only a minor degree, at least
down to the minimum channel radius (4 Å) investigated here.

The above findings do not address the important issue raised
in the Introduction concerning significant flaws in the “standard
model”, including a static representation of the channel and a
continuum representation of the water solvent, especially the
solvent molecules inside the channel. Because of these over-
simplifications, this model predicts extremely small currents
through narrow channels, in stark contradiction to experimental
reality. Reference 23 suggests a practical, though approximate,
way to include these effects in determining the potential of mean
force (PMF),ψI in eq 1, experienced by a permeant ion. The
full PMF includes, in addition to the DSE force, a stabilizing
force due to the local relaxation of the protein channel around
an ion as it moves through the channel. When this full single-
ion PMF is utilized as input into PNP theory (with the usual
mean-field theory arguments used to simplify the effect of the
force on a test ion due to all other permeant ions), the resultant
PMFPNP theory predicts ion currents that are in reasonable
agreement with experiment even for the very narrow gramicidin
channel (radius of 2 Å). As noted in the Introduction, this is
largely a consequence of the cancellation of two effects: the
DSE barrier is compensated by a potential well corresponding
to the “polaronic” stabilization of the ion in the channel due to
local conformational relaxation of the protein. Furthermore,
PMFPNP can predict23 the saturation of ion current with in-
creasing concentration (at fixed voltage), a property of current
flow through real protein channels that does not emerge from
standard PNP theory. It would be interesting to carry out calcu-
lations in which the single-particle force on each ion is obtained
from a PMF calculation of the type outlined in ref 23 while the
forces between all pairs of mobile ions are computed via a
DLMC simulation with an accurate evaluation of the relevant
electrostatic interactions. In this way, ion-ion correlation effects,
single-file queuing kinetics, and so forth could be studied more
carefully. Although these apparently play only a minor role in
the present model system, they may be important in more
chemically realistic models of narrow channels, for example,
those that have selectivity filters (e.g., the KcSA channel).6,11,22

Note Added in Proof. While this paper was in review, the
following papers addressing the issue of dielectric boundary
forces in ion channel energetics appeared: (1) Nadler, B.;
Hollerbach, U.; Eisenberg, R. S.Phys. ReV. E 2003, 68, 021905,
1-9; (2) Corry, B.; Kuyucak, S.; Chung, S. H.Biophys. J.2003,
84, 3594-3606.
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Appendix 1: Origin of the Dielectric Self-Energy Term

The following discussion (Appendices 1 and 2) is based on
idealized point charges. This idealization allows for a compact

presentation of the issues that we want to focus on. We note,
however, that our conceptual model and its implementation in
the present and our earlier work4 are based on finite-sized ions
(i.e., spherically distributed charges46).

Consider a collection ofN point charges in an inhomogeneous
dielectric medium, as sketched in Figure 1. The charges may
be mobile or embedded in the medium (“fixed”).

First, we calculate the electrostatic energy required to
assemble this system of charges from infinite separation. For
the moment, we assume that no externally applied voltage is
present. The work required is43

Here,EB is the electric field vector. It is related to the electric
potential asEB ) -∇Bφ, where the scalar fieldφ(rb) is the (unique)
solution to the Poisson equation (PE) corresponding to the given
collection of source charges, dielectric regions, and the boundary
condition thatφ ) 0 on all bounding surfaces (far from the
charges). Specifically, the relevant PE reads

where on the lhsε(rb) is the dielectric profile and on the rhsqj

is the value of thejth charge andδ(rb) is a three-dimensional
Dirac delta function. Finally, the electric displacement vector
is determined from the electric field by the proportionality
relationDB(rb) ≡ ε(rb)EB(rb).

This electrostatic energy can be equivalently expressed as
follows. Integrating by parts and discarding the surface terms47

yields

Next, we examineφ in more detail. Because the PE is linear,
the overall potential is composed of contributions from each of
the source terms

whereg(rb,RBj) is the potential generated at pointrbby a unit source
charge at pointRBj, i.e., the solution of

subject to the boundary condition thatg f 0 far fromRBj. Note
that in a homogeneous medium characterized by dielectric
constantε and far away from any boundary surfaces

That is, the standard Coulomb potential is recovered. If the
medium isinhomogeneous, however, then the functiong(rb,RBj)
depends on where the source chargerb is located with respect
to the dielectric inhomogeneities in the medium and on the
orientation of the test pointrb as well as its distance from the
source charge. In general,g must be obtained by solving eq
A1.5 numerically. However, even in the inhomogeneous
medium case,g retains the symmetry property thatg(rb,RBj) )

ε(RB1, ...,RBN) ) 1
8π∫ drb EB‚DB (A1.1)

∇B‚(ε( rb)∇Bφ( rb)) ) -4π∑
j)1

N

qj δ( rb - RBj) (A1.2)

ε )
1

2
∑
j)1

N

qj φ(RBj) (A1.3)

φ( rb) ) ∑
j)1

N

qj g( rb,RBj) (A1.4)

∇B‚(ε( rb)∇Bg) ) -4πδ( rb - RBj) (A1.5)

g( rb,RBj) ) 1

ε| rb - RBj|
) g( rb - RBj) (A1.6)
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g(RBj,rb) (because the operator∇Bε∇B is symmetric). Substituting
eq A1.4 into A1.3, we obtain

The double sum on the rhs can be separated into diagonal and
off-diagonal terms

where the first sum includes contributions from all pairs of
charges and we have used the symmetry property ofg noted
above. The first term is essentially the potential energy obtained
by summing Coulomb-like pair potentials (suitably modified
to take account of the dielectrically inhomogeneous medium),
and the second term includes the self-energy associated with
each ion.

The force on a given mobile ion, say ionn, is determined as
the gradient of the “single-ion energy”. To determine this, we
need to retain only the terms in eq A1.8 that depend onRBn:

The first term in this equation is the potential energy experienced
by test chargen due to all of the other free charges in the system.
The second term is the dielectric self-energy (DSE) of test
chargen. In a dielectrically inhomogeneous medium, the DSE
depends on the location of the test charge in the medium and
hence contributes to the force experienced by chargen as it
moves through the system.

Appendix 2: Connection between Dielectric Self-Energy
and Dielectric Boundary Force

The electrostatic energy needed to assemble a collection of
free charges in a dielectric medium can be written in general
as48,49

Suppose that there is a point chargeq at positionRB0. We seek
to calculate the change inε if q is moved by a small distance
to RB0 + δRB. We can do this as follows. First, calculate the
electric potential fieldφ(RB) generated by point chargeq at RB0

subject to the boundary condition thatφ f 0 far from the point
source. In other words, solve the Poisson equation

with F(rb) ) δ(rb - RB0) and the boundary condition just noted.
Now move the charge byδRB. For a sufficiently small change
in position, the electrostatic energy changes by50

where to obtain eq A2.3b we have used the symmetry of the
operator∇ε∇. Note that the quantity in parentheses in the second
integral appearing in eq A2.3b vanishes identically becauseφ

satisfies the Poisson equation (eq A2.2). Thus,

The first equality holds forany change in an arbitrary charge
distribution, and the second specializes to the case under consid-
eration here, whereδF ) q(δ(rj - [RB0 + δRB]) - δ(rb - RB0)).
Equation A2.4 is clearly equivalent to the statement

which establishes a nontrivial relation between the gradient of
the dielectric self-energy of a point charge at pointRB0 and the
electric potentialφ generated by a point charge atRB0.51

Note that eq A2.5 gives the force on a test charge atRB0 due
to an arbitrary collection of free charges in a dielectrically in-
homogeneous medium. Here we are primarily interested in the
situation where there are no free charges in the system besides
the test charge atRB0. In this case,ε(RB) ) (1/2)q2g(RB,RB), and
φ(rb) on the rhs of eq A2.5 is the solution of the PE for a source
charge atRB0 (andφ(rb) f ∞ far away from this source charge).
This establishes the equivalence between the DSE perspective
adopted in the present work (the lhs of eq A2.5 specialized to
the case of one free charge atRB0) and the dielectric boundary
force perspective of Schuss et al. (rhs of eq A2.5 under similar
conditions35).
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