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Peptide Conformational Equilibria Computed via a Single-Stage Shifting Protocol

F. Marty Ytreberg* and Daniel M. Zuckerman *

Department of Computational Biology and the Department afitenmental and Occupational Health,
Graduate School of Public Health, Urrsity of Pittsburgh, 200 Lothrop Street,
Pittsburgh, Pennsyhnia 15261

Receied: March 2, 2005

We study the conformational equilibria of two peptides using a novel statistical mechanics approach designed
for calculating free energy differences between highly dissimilar conformational states. Our results elucidate
the contrasting roles of entropy in implicitly solvated leucine dipeptide and decaglycine. The method extends
earlier work by Voter and overcomes the notorious “overlap” problem in free energy computations by
constructing a mathematically equivalent calculation with high conformational similarity. The approach requires
only equilibrium simulations of the two states of interest, without the need for sampling transition states. We
discuss possible extensions and optimizations of the approach.

1. Introduction considered nonequilibrium calculations which are based upon
) simulating only one or both end states of interest.
Although free energy differenced\G) are fundamental to Poor “overlap”, the lack of conformational similarity between

the description of every molecular process, computer-basedne molecular states of interest, is a key cause of computational
estimation ofAG remains among the most difficult and time-  gyhense in statistical mechanics methods. This phenomenon is
consuming tasks in computational chemistry and biology. jjystrated schematically in Figure 1. Unfortunately, in many
Despite the obstacles, molecular mechaniGscalculations are  cases of interest, poor overlap is the rule rather than the
presently applied for protein engineerihg,drug desigr;* exception. Such dissimilarity is implicit in the critical problem
toxicology studie$, solubility estimatiorf;” and determining o conformational equilibria, for instance.

binding affinities of ligands to proteirfsAlthough many ad hoc
and approximate methods are in wide 8secluding docking
protocolst®14 there is a widely recognized need to more
rigorously include molecular flexibility and entropic effeéfs!4

The most common approach to improve overlap in free
energy calculations is that used in thermodynamic integration,
namely, simulating the system at multiple hybrid, intermediate
- ) - stages (e.g., refs 6, ¥22, 34, 35). An alternative strategy was
Additionally, the development of improved, polarizable molec- (-1an by van Gunsteren and collaboratbmnd McCammon
ular mechanics force fiel$>7 suggests rigorous, ensemble- 54 collaboratof@ who built nonphysical intermediate reference
basedAG estimates will play an increasing role in elucidating  states that increased overlap between the two end states. A third
subtle molecular effects, aided by the decreasing cost of 4te\orthy solution to the overlap problem is the computation

computer resources. of absolute free energies for each of the end states, avoiding
Our concern here is to calculate the conformational free any need for configurational overldp.4°
energy differenceAG and entropy differenceaSfor peptides Here, we address the overlap problem using a two-decade-

with a method based on statistical mechanics, which fully old, elegant idea from solid-state systeths$n ref 41, Voter
accounts for molecular flexibility. Because such techniques pointed out that shifting potential energy functions (or coordi-
attempt a full accounting of entropic and enthalpic effects, they nates) by a constant vector in configuration space can dramati-
are computationally demanding, and it is the need for greater cally improve the overlap of the states while maintaining the
efficiency which we address here. Our ideas are framed andvalue of AG exactly he applied this idea to tungsten dimers on
tested for molecular mechanics calculations, but they should g crystal surface. A similar approach was adopted for lattice
also prove applicable with quantum mechanical computdfion.  systems by Bruce and collaboraté?sn their “metric scaling”

Present statistical mechanics methods can be classified intoapproach, Reinhardt and collaborators also built on Voter's idea
equilibrium and nonequilibrium approaches. Equilibriux® for slow-growthAG estimates for crystal lattice chang€#ost
calculations, such as thermodynamic integration and multistagerecently, in a generalization of Voter's approach, Jarzynski
free energy perturbation, have been used successfully for manyintroduced “targeted free energy perturbation” and applied the
years!®-22 Equilibrium methods can be very accurate, but have method to a LennardJones fluid** However, ref 44 also
a large computational cost. On the other hand, Jarzynski's indicates that constructing the mapping is likely to be as hard
equality?® has recently has opened up a hoshofequilibrium as estimating the free energy itself.
AG method£4-28 Nonequilibrium methods can provide rapid Here, we introduce the first generalization of Voter’s shifting
estimates foAG, but typically suffer from bias without careful  strategy specifically tailored to molecular calculations. Because
convergence testir§. 32 Single-stage approachHéd may be no intermediate stages are required, the approach has the

potential to dramatically reduce computation times. Overlap is
* E-mail: fmy1@pitt.edu. obtained by shiftingnternal coordinatef the molecule. The
T E-mail: dmz@ccbb.pitt.edu. shifting strategy is further combined with Bennett’s iterative

10.1021/jp0510692 CCC: $30.25 © 2005 American Chemical Society
Published on Web 04/02/2005




Peptide Conformational Equilibria J. Phys. Chem. B, Vol. 109, No. 18, 2008097

12 : : : . . . - 2. The Single-Stage Shifting Method

In this section we introduce a single-stage method which
improves the overlap between the end states by construction.
In essence, a mathematically equivalent calculation, with high
overlap, is performed instead of addressing the original problem.

2.1. Constructing an Equivalent Shifted Calculation.
Consider two end states defined by potential energy functions
Uo(X) andU;(X), whereX is a set of configurational coordinates.
The two states could be two different conformations, or the
bound and unbound states of a protein. For problems in
conformational equilibria, as studied belody andU; can be
the same potential function restricted to different regions of
configurational space (i.e., two conformational states). The free
energy difference between these two states is given by
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where f = 1/kgT, and Z indicates a partition function, and
integration is to be performed over the indicated potential
function. Note that for implicit solvation, as is used in this study,
the Gibbs free energy is equivalent to the Helmholtz free energy.
Using the formalism of free energy perturbati$nwe can
rewrite eq 1 as
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Figure 1. lllustration of the shifting idea using two idealized torsional configurations.
potentials (a)Jo(¢) and (b)Ux(¢). There is minimal configurational Voter’s shifting strategd improves the overlap between states

overlap between th_esg two ppt_entials, since sirr_]ulations v_viII mainly (potential functions) without alteringG. Imagine shifting the
sample the deep, dissimilar minima of the potentials. (c) With the use origin of the configurational coordinat@sin U; by a constant

of an appropriate shifting constant, it is possible to construct overlap . . .
between the states without altering the numerical value of the VECtOrC. This corresponds to a simple change of variables,

conformational free energy difference. Note that for peptides, we shit — X + C, andZ[Uy(X + C)] = Z[Uy(X)] remains unchanged
internal coordinates rather than potentials (see Section 2.3); however,because integration is performed over all space. Equation 2 can

these two procedures are equivalent. now be written as

approachf to efficiently utilize the data. These two ideas, (i) Jdx (& MU~ Uy gfUol)
shifting internal coordinates and (ii) the use of Bennett’s iterative g PAG = = =
method, provide the backbone of the single-stage shifting fd")’( g AU

approach presented here.

In outline, this report first builds the necessary mathematical
framework for the single-stage shifting method in Section 2.
Then in Section 3, the method is tested on leucine dipeptide
(ACE-(leup-NME) in GBSA implicit solvent, correctly calcu-
lating the free energy differenceG and entropy differencAS
between the alpha and beta conformations. The leucine dipeptid
system is also used to demonstrate various shifting approachest
and show the importance of using Bennett's iterative method.
Finally, the single-stage shifting method is used to pred&t .5 ginates and we term the approach single-stage shifting.
and AS between the alpha and extended conformations of To demonstrate the reasoning behind a shift in internal
decaglycine (ACE-(ghth-NME) in GBSA solvent. coordinates, consider the schematic torsional potentials shown

While our results already demonstrate notable efficiency (the in Figure 1a,b. Simulations fag; will mainly sample the large
decaglycine calculations, for instance, would be very costly by “trans” well at ¢ = 0, while simulations forUy will mainly
conventional staging methods), we have not yet pursued asample the large “gauche” well at~ —150. ShiftingU; by a
number of fairly clear avenues for optimization; these are constant corresponding to the difference between the minima
discussed in Section 4. Finally, the potential extension of the of the two potentials (i.e., roughly 15Cfor this example)
single-stage shifting method to explicitly solvated systems, and produces Figure 1c, where the overlap betwgennfigurations
for “alchemical” mutations, is explored in Section 5. is excellent. Such a shift doestalter theU; partition function

@ VGO~ (3)

In principle, eq 3 implies that one can arbitrarily shift the
coordinates for th&J, configurations needed for the average.
(Shifting Ug rather thanU; produces an analogous result.) In
ractice, the shifting should be done to maximize the overlap
etween configurations ity and U;. Unfortunately, noCar-
esianshift vector can bring two distinct molecular configura-
tions into overlap. Therefore, we apply the Voter ideaternal
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and thusAG is unaffected. Note that, below, we shift internal
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both Uy andU;. The shift constant is then chosen to align the

coordinates rather than potentials, but these are equivalentpeaks of these histograms,

procedures.
In practice, the dimensionality of the system will be high
and the shifting constant will not be as obvious as that in Figure

1. Reasonable methods for determining the shifting constant

will be discussed in Section 2.3.
2.2. Utilizing Bidirectional Data. Bennett's Methods. In

()

Below, we shift using both of these choices for various
internal coordinate subsets, and compare the results.
Procedurally, an estimate oAG is generated using the

single-stage free energy perturbation (eq 3), only configurations following steps:

from Up are evaluated usinyi. However, if simulations are

1. Generate an equilibrium trajectory in both states of interest,

performed in both states of interest, one could just as readily i.e., usingUp andU;. Determine, as discussed above, the subset

evaluate configurations froftd; usingUo. Bennett showed that
the “bidirectional” Uo — U; andU; — Ug) evaluations could
be combined to minimize the uncertainty NG 5

Bennett introduced both “iterative” and “acceptance-ratio”
methods to utilize bidirectional dafé.Generalizing the ac-
ceptance-ratio formulation to the shifting approach yi€ld3s

Mnin(1.0,e AUHO-Uoth g

o AG _
[Min(1.0 e—ﬁ[UO(Y—C)—Ul(Y)]) q

(4)

Similarly, generalizing to the iterative method to shifted
coordinates leads to the following relatfén

1+ efﬂ[Uo(i)ful(X+f))+AG])7l|g _
ml + e—/)’[Ul(?)—Uo(Y—e)—AG])—1q. (5)

Since AG is on both sides of eq 5, it must be solved in an
iterative fashion. Equation 5, in its unshifted form, has been
shown to be the optimal use of bidirectional d&t434748

Below we use the single-stage shifting method to calculate
AG using eqs 35 with internal coordinates shifted by a

constantC, which is chosen to maximize the overlap between
Up and U; states. For the systems studied below, leucine
dipeptide and decaglycine, we find the iterative method of eq 5
to be the most efficient use of the raw data.

2.3. Practical Implementation in Molecular Systems.
Determining a shifting constar@ in eq 5 involves making a

decision about the subset of coordinates to shift. There is

generally a minimum number of coordinates needed. For

example, for leucine dipeptide, we define the alpha and beta
conformations using two backbone torsion angles; thus these

two torsionsmustbe shifted. In practice, it is also possible to
shift too many coordinates, leading to steric clashes. This will
be shown below for peptides.

Once the subset of shifted internal coordinates has been

determined, the shift consta@® must be calculated for all
coordinates in the subset. In Figure 1, we chose to shift
according to the minimum dflp andU;. This leads to our first
approach: after equilibrium simulation in each potential, find
the lowest energy frame (snapshot) for bath and Uy; then
choose the constant vectBwhich aligns the two lowest-energy
frames,

_C’ — —yomin . ylmin, (6)

of coordinates to shify, and the shifting vecto€ using eq 6
or7.

2. For each _frame in th&Jy trajectory, shift the internal
coordinates byC (e.g.,¢2 — ¢2 + 90.0). Then, for eachJo
frame,X, evaluate and record;(X + C) — Uq(X).

3. Repeat step 2 for each frame in theensemble with one
important difference: the frames must be shifted in the opposite
direction (e.g.g2 — ¢ — 90.0), yieldingUo(X — C) — U (X).

4. Solve eq 3, 4, and/or 5 to determine a estimate.

Below, we utilize this process to generate multipl&s
estimates, after which the me&® and standard deviation are
calculated.

When shifting internal coordinates care must be taken to shift
the coordinates so that the partition function remains unchanged.
Using the standard internal coordinates for bond lengtond
angle #, and dihedralsw, a differential volume element in
configuration space is given by

d%, = ridr, sin 6,d6, dw, = d(r¥3) d(cos6,) dw,, (8)

whereX; represents one possible set of internal coordinates.
Equation 8 holds for every possible set of internal coordinates
and thus implies that the shifting of internal coordinates must
be done according to simple rules. Bond lengths must be shifted
according to the cube of the length® — r3 — r2, wherer is

the bond length shifting constant (i.e., one component of the
vectorC) found either by the peaks from histogramsr&find
using eq 7, or by comparing minimum energy frames and using
eq 6. Similarly, bond angles must be shifted using&es cos

6 — cos 6., and dihedrals are shifted via — o — ..

3 Results for Peptides

To test the effectiveness of the single-stage shifting method,
we performed all-atom simulations of leucine dipeptide (ACE-
(leux-NME) and decaglycine (ACE-(glyyNME). Both pep-
tides were simulated using the TINKER Version 4.2 molecular
dynamics packag®.The peptides were solvated implicitly using
the generalized Born surface area (GBSA) appréacmd
Langevin dynamics were utilized with the friction coefficient
set to that of water (91.0 pY). A time step of 1.0 fs was chosen
for all simulations. Leucine dipeptide was maintained at 500.0
K (to enable independent verification of our result) and utilized
the CHARMM_27 force field parameter sétDecaglycine was
maintained at 300.0 K and used the AMBER96 force field
parameter sét for comparison with Ref 37.

3.1. Leucine Dipeptide. Leucine dipeptide (ACE-(lew)
NME) was chosen as a test system because (i) it possesses some
of the complexity of a large molecule: four backbone torsions

wherey represents the subset of coordinates (e.g., only torsions)and eight side-chain dihedrals; and (i) it is small enough to

of the configuratiorX. Strictly speakingC is a vector of the
same dimensionality &§ with zero for every component not
present iny. Another reasonable choice for a shift constant is
realized by generating a histogram for each coordinajefan

allow for very long simulation times. Long simulation times
are necessary for an unbiased, independent determination of the
conformational population (hena®G), providing a strict test

of the single-stage shifting method.
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TABLE 1: Conformational Free Energy Differences AG for Alpha — Beta Conformations for Leucine Dipeptide in GBSA
Solvent Using Several Variations of the Single-stage Shifting Approaéh

shifting approach shifted coordinates iterative (kcal/mol) accept. ratidG (kcal/mol)
peak of histogram (eq 7) backbone torsions only 1.08 (0.15) 1.02 (0.13)
all torsions 0.56 (0.87) 0.55 (0.86)
all torsions and bond angles 0.76 (2.64) 1.01 (3.25)
all internal coordinates 0.78 (2.63) 1.09 (3.26)
lowest energy frames (eq 6) backbone torsions only 1.29 (0.35) 1.30(0.39)
all torsions 0.99 (0.66) 0.98 (0.66)
all torsions and bond angles 3.36 (4.75) 6.48 (9.45)
all internal coordinates 4.50 (7.16) 8.80 (14.32)

a Each shiftingAG result is an average of 16 independent 2.0 ns estimatdsSofvith standard deviation shown in parentheses. The iterative
results use eq 5 and the acceptance-ratio results use eq 4. For comparison, the s@uebtdined from long simulation (4,0s) is 0.95 (0.05)
kcal/mol. The entropy differenc&S, found by single-stage shifting, was zero within uncertainty, consistent with the value obtained by long simulation.
This table also demonstrates that shifting too many coordinates (i.e., bond angles and lengths) leads to steric clashes, and thus a larger uncertaint
for AG.

For leucine dipeptide we calculated the free energy difference approaches (Section 2.3) to estimat@ for leucine dipeptide.
AG and entropy differencASfor the alpha— beta conforma- The value of AS was found to be zero within uncertainty,
tional change. We defined the alpha and beta conformationsconsistent with the value found using eq 9. For each shifting
using two internal backbone torsions, namely, for alphd45 approach, we tested four sets of shifting coordinates: backbone
< ¢ < —25 and—125 < y; < —5; and for beta—160 < ¢, torsions only, all torsions, all torsions and bond angles, or all
< —40 and 70< y; < —170. A temperature of 500 K was internal coordinates (torsions, angles, and bond lengths). In
chosen to enable repeated crossing of the free energy barriemddition, we also show results using both the iterative method
between the alpha and beta conformations. At 500 K, leucine of eq 5 and the acceptance-ratio method of eq 4. The values
dipeptide switches between alpha and beta conformations at &or AG are averages with standard deviations shown in
rate of around 2.5 transitions per nanosecond with GBSA parentheses. Our single-stage shifting results in Table 1 agree
solvation. Note that this high temperature is required only to well with the unbiased estimate given above. The table also
obtain an unbiased estimate Af5; our single-stage shifting ~ show that shifting torsions results in a small uncertainty, while
approach works equally well at lower temperatures. including bond angles and lengths makes A& estimate less

To obtain an independent and unbiased valu&\Gf four certain.
1.0 us simulations were performed yielding around 2500 In all of our simulations, we have found that shifting torsions
transition events per trajectory. The four trajectories were then (either backbone only, or all torsions), and using the iterative

used to calculatAG via the definition method of eq 5, has consistently provided accurate results. Also,
as demonstrated in Table 1, lower uncertainty is obtained by
AG = —lln Nieta ©) shifting according to histogram peaks and using eq 7 rather than

B Naioh ’ shifting by the lowest energy frames.

We also stress the importance of using bidirectional data to
whereNapnaandNyeaare, respectively, the number of dynamics determineAG for conformational equilibria. To this end, in
steps the system was in the alpha and beta conformations. Therigure 2, we employed the single-stage shifting method using
unbiased value oAG for alpha— beta was found to bAG = three data analysis protocols: single-stage free energy perturba-
0.95 £ 0.05 kcal/mol, where the value &G given is the tion in both directions (eq 3% Bennett's acceptance-ratio
average of the four 1.0s estimates with uncertainty given by method (eq 4), and Bennett's iterative method (ed°5Jhe

the standard deviation. superior convergence properties of the iterative method can be
The unbiased entropy difference was calculated using eq 9seen in Figure 2. The solid horizontal black line represents the
via TAS= AUay— AG WhereAU,yis the average dflpeta— independent, 4.0s AG value obtained by using eq 9. The data

Uapha We found thafTASwas zero within uncertainty. Thisis ~ areAG estimates using the single-stage shifting method, where
consistent with our observation that the fluctuating degrees of backbone torsions were shifted according to the histogram peaks.
freedom for leucine dipeptide are mainly the side-chain torsions The data for the figure was generated using a single trajectory
and thus do not change dramatically between the alpha and betan each of the alpha and beta conformations. The red curve was
conformations. Given the overallG value, the alpha confor-  generated from Bennett's acceptance-ratio method, the green
mation is favored due to intramolecular attractions. dashed curve is free energy perturbation in the forward direction

With an unbiased value oAG from eq 9, it is possible to  (i.e., AGapha-betd, and the green solid curve is free energy
test various implementations of the single-stage shifting method. perturbation in the reverse direction (i.e AGpeta-aphg. Finally
To this end, we simulated leucine dipeptide in the alpha and the solid blue curve is Bennett's iterative method. It is clear
beta conformations, generating four 1.0 ns trajectories for eachfrom the figure that using bidirectional data is very important
conformation. Each of the trajectories were obtained by to the success of our single-stage shifting method. Further,
constraining the backbone torsions to stay within the defined Bennett's iterative method is shown to converge more quickly
ranges for alpha and beta, given above. The constraining forcethan the other methods.
was zero if the torsion angles were within the allowed range  Figure 3 demonstrates the efficiency of the single-stage
and harmonic otherwise. Frames were saved every 0.1 psshifting method compared to long simulation and use of eq 9.
yielding 10 000 frames per trajectory. The horizontal black line is the unbiaséds from long (4.0

The four trajectories provide sixteen independent single-stageus) simulation. The curve shows the average (blue squares) and
shifting estimates oAG and AS using all possible pairings.  standard deviation (errorbars) of the single-stage shifting method
The results forAG are summarized in Table 1 where we used where backbone torsions were shifted by the histogram peaks,
both the lowest energy frame and histogram peak shifting and the iterative method of eq 5 was used to analyze the data.
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TABLE 2: Conformational Free Energy Differences AG and Entropy Differences TAS for Alpha — Extended Conformations
of Decaglycine in GBSA Solvent Using Several Shifting Approachés

shifting approach shifted coordinates iterative (kcal/mol) iterativeTAS (kcal/mol)

peak of histogram (eq 7) backbone torsions only —12.39(0.47) 9.75 (0.66)

all torsions —12.59 (0.82) 9.95 (0.93)

all torsions and bond angles —12.77 (2.94) 10.12 (2.97)

all internal coordinates —12.75(3.11) 10.10 (3.13)
lowest energy frames (eq 6) backbone torsions only —11.97 (1.59) 9.34 (1.71)

all torsions —12.12 (2.57) 9.48 (2.76)

all torsions and bond angles —18.53 (11.14) 15.89 (10.93)

all internal coordinates —24.79 (14.03) 22.15(13.86)

a Each shifting result is an average of 16 independent 2.0 ns estimates with standard deviation shown in parentheses, using the iterative method
of eq 5. Acceptance ratio results (data not shown) had a much larger uncertainty than the iterative method. This data clearly shows that lower
uncertainty is obtained by shifting via histogram peaks rather than by the lowest energy frame. Also, shifting nontorsional coordinates (i.e., bond
angles and lengths) dramatically increases uncertainty
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o Figure 3. Conformational free energy differendes for alpha— beta
< conformations of leucine dipeptide in GBSA solvent, shown as a

function of the simulation time. The horizontal black line shows the
known AG obtained using 4.@ts of simulation and eq 9. The data
T T were obtained using the single-stage shifting method where backbone
‘]%_1 1 10 100 1000 torsions were shifted according to the peak of the histogram, and the
Simulation Time Per Trajectory (ps) iterative method of eq 5 was used to analyze the data. The average
AG estimates (blue squares) and standard deviations (errorbars) were
calculated using sixteen independent estimates®fUsing the single-
stage shifting method, with only 30 ps of simulation (15 ps in alpha
and 15 ps in beta), the average estimat&Gfis within 1.0 kcal/mol
p of the known value with a standard deviation of less than 1.0 kcal/
mol. This may be compared with unconstrained simulations, in which
transitions between alpha and beta conformations occurred, on average,
every 400 ps.

Shift-FEP backward

Figure 2. Comparison between several shifting methods for the
conformational change in free energy for alphabeta of leucine

dipeptide in GBSA solvent. The alpha (top left, “cis-like”) and beta
(top right, “trans-like”) conformations are also shown, with the
backbone carbons colored black. Two trajectories (one in eac
conformation) were analyzed using several protocols of the single-stage
shift technique. The solid horizontal black line represents theud.0

value of AG obtained by using eq 9. The curves are obtained using the
single-stage shifting method where backbone torsions were shifted

according to the peak of the histogram (i.e., lowest uncertak@y - ¥ = —120. Previous\G andAScalculations of decaglycine
estimate in Table 1). The red curve was generated from Bennett's in & vacuum were performed by Karplus and KusFicknd
acceptance-ratio method, the green dashed curve is free energyquite recently by Cheluvaraja and MeirovitthApparently,
perturbation in the forward direction (i.eAGapha-betd, and the green  decaglycine’s conformationa8lG and AS have not previously
solid curve is free energy perturbation in the reverse direction (i.e., peen computed in implicit solvent.
—AGueta-apng- The solid blue curve is Bennetts iterative method. The 14 410y jateAG andAS, four trajectories in each conforma-
figure clearly suggests the superior convergence properties of the . - . - .
iterative method for our single-stage shifting data. tion were generated.usmg the simulation parameters defined
previously. Thus, 16 independeftG andAS estimates can be
In our unconstrained simulations, leucine dipeptide switched calculated. Each trajectory was 1.0 ns in length with a frame
between the alpha and beta conformations, on average, onceaved every 0.1 ps yielding 10 000 frames per trajectory,
every 400 ps. Using our single-stage shifting method, with only although this may be quite suboptimal; see Section 4. As with
30 ps of simulation (15 ps in alpha and 15 ps in alpha), a leucine dipeptide, each of the 168G and AS estimates was
reasonably accurate and precise valuAAGf can be obtained.  generated using various shifting approaches.

3.2. DecaglycineWe also applied the single-stage shifting Table 2 shows the results of our calculationA® and AS
method to decaglycine (ACE-(ghyNME), predicting the for the alpha— extended conformational change using various
conformationalAG and entropy differencé\S for alpha— shifting approaches. The entropy change was estimatetivia
extended conformations. We again defined the alpha and= AUag — AG whereAU,y is the average obext — Uaipha
extended conformations by the internal backbone torsions (i.e.,Acceptance ratio estimates had a much larger uncertainty than
excludinge¢; andiyig), namely, for alpha=115< ¢ < 5 and the iterative method estimates and thus are not included in the
—115< ¢ < 5; and for extended: 128 ¢ < —120 and 120 table. The results clearly demonstrate that shifting by histogram
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estimate for decaglycine (as we did with leucine dipeptide)
because of the required simulation times.

In the current implementation, a total of 8 ns of simulation
was required to obtain a reasonably accurate and precise estimate
of AG. To our knowledge, no multistage calculation has ever
been attempted on this system, undoubtedly due to the com-
putational expense. Nevertheless, we believe additional opti-
mization of our current shifting protocol will be possible, as
we now discuss.

Finally, we note that, as in ar&G computation, our results
reflect the definitions chosen for the alpha and extended states.

4. Further Optimization of the Single-Stage Shifting
Approach

AG Estimate (kcal/mol)

While the present results indicate that peptide conformational
equilibria can be determined by sub-nanosecond simulations,
several promising avenues for optimization have not been
explored. We briefly sketch several possible approaches for
improving efficiency, including combining the shifting approach
with traditional staged calculations.

It is useful to consider the upper limit for the computational
cost of the single-stage shifting procedure. The maximum is
essentially twice that of equilibrium simulation, provided the
method is hard-wired into the molecular dynamics program, due
to the extra energy call that must be made for each shifted frame.
In the current study, the shifting procedure was scripted external
to the simulation program (TINKER), and thus the cost for
trajectory analysis was high, limiting the number of frames per
trajectory to 10 000. We found that, for this fixed number of
frames per trajectory, the simulation time between frames had
very little affect on theAG estimate. Thus, we feel that
substantial increases in efficiency could be realized by utilizing
frames more frequently in th&G calculation, i.e., fewer time
steps between frames. (It is worthwhile to recall that interactions
change enough over a single time step to require recalculation

=

=

TAS Estimate (kcal/mol)

100

Simulation Time Per Trajectory (ps)
Figure 4. Conformational free energy differenc®G and entropy
difference TAS for the alpha— extended conformational change in
decaglycine with GBSA solvent. The alpha (top left) and beta (top

right) conformations are also shown. The data were obtained from eight . .
independent simulations: four constrained to be in alpha and four in Of forces.) Ultimately, then, reliable and accura€ calcula-

extended. From the eight simulations, 16 independent estimateG of ~ tions should take no more time than required to sample the
were obtained, and the averages (blue squares) and standard deviatioraquilibrium ensemble in a given state (the minimum time for
(err_or bars) were calculateo_l asa function_of simu_lation time. Iae(éh_ ~any AG method).
e D s sy Adctionaly, the shiing procedures expored n s repor
of eq 5. g P 9 ignore correlation between coordinates, such as those known
from Ramachandran plots, where backbone torsipréd i
peaks provides a higher level of precision than shifting by the do not vary independently. Ramachandran plots, moreover,
lowest energy frame. Also, as with leucine dipeptide, lower average over many residues, which individually are likely more
uncertainty is obtained when shifting torsions only (i.e., not bond correlated. To motivate more general shifts, consider one state
angles and lengths). where a certain pair of,ip angles inhabit a predominantly
The results in Table 2 suggest that the “compensating” role vertical region of Ramachandran space, while the other state
of the entropy is vital for an accurateG calculation in GBSA populates a region with a very different orientation. In such a
solvent. Our studies of decaglycine in a vacuum (data not case, simple shifts alone (e.g., those in egs 6 and 7) will not
shown), as well those of other grodp3 show that the alpha  maximize overlap to the extent that a combined shift and
conformation is more stable than extended, due mainly to (partition-function-preserving) rotation would. Further, if one
energetics. However, our results suggest that, with the additionoblong well is very narrow and the other well is very broad,
of (implicit) solvent, the energy difference between the two then coordinate scaling (contraction/expansion) should also be
conformations becomes small enough that the entropy termperformed (see also Refs 43, 44). In general the coordinates
dominatesAG, to the degree that the extended conformation is can be linearly scaled, rotated and/or translated using a constant

more stable than alpha.

Figure 4 showsAG and TAS as a function simulation time.
The data points are the average of the sixteen independen
estimates with standard deviation given by the error bars for

matrix A (i.e.,X — AX + C), and egs 35 must be generalized
to account for the matriA. More complex, nonlinear trans-
formations are also possible, but may not be practical.

In larger systems than those considered here (e.g., whole

bothAG (blue squares) antiAS(green circles). These estimates proteins), the gain in overlap due to the internal coordinate shift
were obtained using the iterative method, and shifting the may prove insufficient to permit reliable single-stage computa-
backbone torsions by the histogram peak. The figure demon-tion of AG values. In such cases, it may be advantageous to
strates the apparent convergence ofAl@@andTAS estimates. combine the single-stage shifting approach with multistage
Note that it would be impractical to obtain an independent methodology. To do so, a path connecting the two states of
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interest can be defined (e.g., refs-%%), and independent

Ytreberg and Zuckerman

is preferred due mainly to the strongly favorable intramolecular

trajectories can be generated at intermediate stages along thénteractions. It must be borne in mind that our quantitative results
path. Then, between each successive intermediate stage, thaecessarily depend on our state definitions (see Section 3).

incremental free energy differencéQ) is estimated using the
shifting protocol outlined in Section 2.3. Tl estimates can
then be summed to obtain the flliG for the complete path.

5. Extension to “Alchemical” Calculations and Explicitly
Solvated Systems

It is possible to extend the formalism of the single-stage
shifting method beyond conformation&G calculation for
implicitly solvated molecules. In this section we outline the
potential for the single-stage shifting method to be used for
“alchemical” mutations, which are the basis for relative binding
affinities and solubilitie$® and on explicitly solvated systems.

For alchemical mutation, two distinct potential energy func-
tions Ug andU;, one for each molecule, are used in egsh3
While the mathematical formalism is unchanged from confor-
mationalAG calculations, the difficulty in alchemical mutations
lies in determining the shifting vectdz, since the number of
degrees of freedom fddp andU; are different, in general. (For
conformational AG calculations, such as those above, the
number of degrees of freedom faky and U; are always the
same.) This difficulty can be overcome by introducing “dummy”
coordinates as in ref 54. Although dummy coordinates will

change the absolute free energy values, use of a thermodynami

cycle guarantees that the free energy differenGewill remain
unchanged. Thus, accuratelative binding affinities and
solubilities can be obtained.

It may also be possible, though likely more challenging, to

extend the single-stage shifting approach to explicitly solvated

While the present report describes a single type of application
of the single-stage shifting approach (to conformational equi-
libria), we believe the idea will find quite broad applications,
in part due to the substantial potential for further optimization.
We have therefore discussed optimization of the method and
application to “alchemical” mutations (for relative binding
affinities). Inclusion of explicit solvent is also possible, in
principle, but may represent a practical challenge. The single-
stage shifting approach may also be combined with multistage
simulation, allowing further optimization. We are currently
exploring these ideas.
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