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Abstract

Coarse-grained protein structures have the unusual property of manifesting a greater regularity than is evident when all atoms are
considered. Here, we follow proteins at the level of one point per residue. We confirm that lattices with large coordination numbers provide
better fits to protein structures. But, underlying these protein structures, there is an intrinsic geometry that closely resembles the face-
centered-cubic (fcc) lattice, in so far as the coordination angles observed in clusters of near neighboring residues are concerned. While the fcc
lattice has 12 neighbors, the coordination number about any given residue in a protein is usually smaller; however, the neighbors are not
distributed in a uniform, less dense way, but rather in a clustered dense way, occupying positions closely approximating those of a distorted
fcc packing. This packing geometry is a direct manifestation of the hydrophobic effect. Surprisingly, specific residues are clustered with
similar angular geometry, whether on the interior or on the exterior of a protein. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Proteins are compact linear molecules with some regula-
rities in their polypeptide backbone. Foremost among these
are two regular motifs commonly observed: a-helices and
[B-strands. Studies on the regularities of the polypeptide
backbone began with the pioneering work of Ramachandran
and coworkers [1]. The occurrence of «o-helices and
[3-strands in native proteins could be attributed to the acces-
sibility of the corresponding rotational angles seen in the
Ramachandran maps. Yet, the calculated energies of a
single residue for the rotational angles do not completely
account for the high frequency of occurrence of these
secondary structures in folded proteins. These secondary
structures are indeed stabilized significantly by interactions
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other than those between the nearest neighbor bonds, which
are usually considered on Ramachandran plots. They
are stabilized by so-called higher order interactions. For
example, a-helices are stabilized by the hydrogen bonds
between the C=0 and N-H groups of the respective
residues i and i + 4, while sheet formation stabilizes the
[B-strands by the association of polar groups of segments
even further along the sequence. Thus, non-bonded
interactions do play a major role in stabilizing secondary
structures.

The importance of non-bonded interactions in proteins
goes far beyond the stabilization of secondary structures.
Proteins are unique in that each sequence of amino acids
selects one or sometimes a few three-dimensional structure
and the non-bonded interactions are accepted to be the
major determinant of the different folds taken by different
amino acid sequences.

Thus, in contrast to the statistical analysis of polymers in
which significant information on conformational behavior
can be extracted from the rotational isomeric state distribu-
tion of individual (or pairwise dependent) bonds, analyzing
proteins’ conformational preferences necessitates a thor-
ough understanding of the preferences for the non-bonded
interactions of amino acids. Not surprisingly, a large
number of computational and theoretical studies have
been directed at characterizing the empirical potentials for
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inter-residue interactions [2]. The Protein structure Data
(PDB) [3] where the atomic coordinates of all proteins
determined by X-ray crystallography or NMR spectroscopy
are deposited has been exploited as an important source for
extracting information on inter-residue potentials. The
essential approach is to use the so-called inverse Boltzmann
law, i.e. calculate effective potentials, or free energies, from
the observed frequencies of amino acid pairs, assuming
that the examined PDB structures contain a complete
equilibrated set of residue pairs.

Although significant efforts have been devoted to modeling
inter-residue interaction potentials as a function of their spatial
separation, much less attention has been given to the orienta-
tional preferences of amino acids or to the coordination
directions of amino acids. Examinations of such angular
preferences revealed [4-9], on the other hand, some non-
randomness, which could signal the occurrence of some
generic preferences for the packing of residues in proteins.

Clearly, the existence of some regularity in residue
packing would be of great utility for reducing the computa-
tional time and increasing the accuracy of conformational
searches. Presently, methods of bioinformatics can predict
secondary structure with up to 80% accuracy [10], and
significant progress can be made in tertiary structure
prediction by combining the tools for predicting secondary
structure with those efficiently discriminating between
alternative non-bonded interaction geometries.

A common approach for reducing the conformational space
of macromolecules is to adopt coarse-grained lattice models.
Two major computational advantages of lattice models are
to discretize the conformational space, and to be amenable
to integer algorithms. Lattice models not only provide an
efficient means of generating conformations and perturbing
them to investigate the dynamic characteristics, but also
provide insights about the global behavior of molecular
systems that could not be explored in atomic detail [11].

In the present work, the possible regularity in the
association of non-bonded residues in folded proteins will
be investigated. The representation of the coordination ofre-
sidues in terms of different lattice geometries will be
explored. It will be shown that a diversity of lattice geome-
tries, including simple lattices, such as simple cubic (sc),
can be adopted for a satisfactory description of the structure
at a coarse-grained level. Yet, the optimal association
of non-bonded residues, or the preferred coordination direc-
tions, will be shown to approximate the face-centered-cubic
(fcc) geometry.

The fcc geometry has been only recently shown [12,13],
rigorously, to be the closest packing geometry for identical
spheres [14,15], i.e. after approximately 400 years since the
original conjecture of Kepler. Interestingly, the same
geometry, termed second nearest neighbor diamond
(2nnd) lattice, has been recently proposed for a coarse-
grained representation of polymer chains whose backbone
bond angles are approximately tetrahedral [16—18]. This
lattice may be viewed as consisting of directional vectors

that connect every other site on a tetrahedral lattice, and it
has indeed been utilized for locating every other backbone
atom in polyethylene-like chains. Monte Carlo (MC)
simulations of polyethylene melts performed on the 2nnd
lattice and reverse mapping of the equilibrium structures to
full atomic continuous space yielded several properties,
including the cohesive energy densities, that were in close
agreement with experimental data [19].

In the present coarse-grained study, the virtual bond
model is adopted for modeling the backbone. The geometric
features of this model conform to those of an fcc lattice,
hence the special suitability of the fcc directions for describ-
ing the polypeptide backbone. However, the tendency of
residues to be coordinated in conformity with the fcc
geometry is stronger than the preference that would be
imparted by the geometric suitability for the backbone
alone. Furthermore, this tendency is discerned even when
bonded neighbors are excluded. The fact that the fcc pack-
ing is the closest packing geometry for identical spheres
brings into consideration the possible drive for maximizing
packing density as a possible (origin for the appearance of
the fcc geometry. Besides, even the formation of helices in
proteins and DNA has been recently shown to be a conse-
quence of optimal packing requirement [20-21]. Clearly,
residue side chains differ in their size and shape. But at a
coarse-grained scale where such differences are ignored, an
intrinsic bias towards a universal geometry that provides the
most efficient packing for identical spheres can be
discerned, which suggests that the drive for optimizing
packing density may be stronger than previously thought.
It can be concluded that close packing, though indirectly, is
a result of hydrophobic effects. The reason is that hydro-
phobic interactions are generally non-specific; they do not
distinguish between different interactions geometries, and
thus could conform to any geometry that would maximize
the packing density. On the other hand, the interactions
between polar (or hydrophilic) groups require specific asso-
ciation of functional groups, along specific directions, and
do not necessarily conform to a uniform, symmetric packing
geometry. The fact that a regular packing is approximated
signals the importance of hydrophobic effects.

2. Model and method

A single-site-per-residue model is adopted for representing
protein structures. The CP-atoms of all amino acids are used
to this aim, except for glycine residues for which the C*-
atom is utilized in the absence of a side chain. Clusters of
residues are collected from 150 non-homologous PDB
structures. Each cluster consists of a central residue, and
its nearest (bonded and non-bonded) neighbors within a
first coordination shell of 6.8 A [22]. The coordination num-
ber of residues varies in the range 3 = m = 14. A total of
28,730 clusters has been collected, and organized in 20
subsets, depending on the identity of the central amino acid.
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Table 1
Coordination angles for different lattice geometries
sc

1 2 3 4 5 6
0 () 45 45 90 90 135 135
¢ (©) 90 270 0 180 90 270
bce

1 2 3 4 5 6 7 8
0 () 55 55 55 55 125 125 125 125
¢ (©) 45 135 225 315 45 135 225 315
emb

1 2 3 4 5 6 7 8 9 10
0 () 35 45 45 90 90 90 90 145 135 135
¢ (©) 0 90 270 0 125 180 235 0 90 270
hep

1 2 3 4 5 6 7 8 9 10 11 12
0 () 35 35 35 90 90 90 90 90 90 145 145 145
¢ (©) 30 150 270 0 60 120 180 240 300 30 150 270
fec

1 2 3 4 5 6 7 8 9 10 11 12
0 () 35 35 35 90 90 90 90 90 90 145 145 145
¢ (©) 30 150 270 360 60 120 180 240 300 210 330 90

Here, we concentrate on the similarities between the
coordination angles, rather than on the coordination
distances. Each cluster is thus reduced to a bundle of unit
directional vectors representing the angular position of resi-
dues within the first coordination sphere. The objective is to
identify the regularities, if any, in the coordination direc-
tions of residues.

Five lattice representations have been considered in
order to assess the regular geometry that best suits the data-
bank clusters. These are simple cubic (sc), body-centered-
cubic (bcc), face-centered-cubic (fcc), hexagonal close
packed (hcp) and a hybrid lattice formed by embedding a
tetrahedral lattice into a simple cubic lattice, shortly desig-
nated as ‘emb’. The corresponding coordination angles are
6, 8, 12, 12, and 10, respectively. The directional vectors
associated with these lattices, expressed in terms of two
spherical angles (6: polar, ¢: azimuthal), are listed in
Table 1.

The clusters of directional vectors extracted from the
PDB are compared in each case with the directional vectors
characteristic of the different lattices. Best fit of the clusters
on the directional vectors of the target lattice requires rigidly
rotating the clusters so as to minimize the deviations
between closest pairs of directional vectors. An iterative
MC algorithm is conveniently used to this aim. Each step
consists of an incremental rotation of the overall cluster,
which is accepted if the deviation between the two sets of
directional vectors is reduced, and rejected otherwise. For a
cluster composed of m directional vectors, being superim-
posed on a target lattice of coordination number z, there are
z!/[m!(z — m)!] possible combinations for pairing the direc-
tional vectors. Each combination has been considered for
determining the optimal set of superimposed pairs. The

quality of the fit to the target lattice is assessed from
the mean distance between the tips of the closest pairs of
directional vectors.

In addition to the above procedure used for testing the
suitability of target lattices, the occurrence of off-lattice
coordination states has been explored. To this aim, the
clusters were superimposed disregarding any predefined
regular architecture. This so-called optimal superimposition
scheme is significantly more expensive than the fit to a
target lattice: the application to a set of N = 1000 clusters,
for example, requires about 50 h (real time). At each step, a
randomly selected cluster is rotated, and its root-mean-
square (RMS) deviation with respect to the remaining
N — 1 clusters is tested. The move is accepted if the RMS
deviation is decreased. Results are found to converge by
performing runs for a total of 3 X 10° steps. Usually, a set
of 1000 clusters is verified to be large enough to obtain
statistically reliable results, while being small enough to
be superimposed within a reasonable computational time.

3. Results
3.1. Fit to target lattices

As a first step, we tested the suitability of the fcc geo-
metry, which was recently pointed out to closely fit the
coordination architecture of residues [23]. To this aim, the
quality of the fit achieved by forcing the PDB clusters of
directional vectors to match the directional vectors of the
fcc lattice has been examined. The results displayed in
Fig. 1 demonstrate that the angular positions of residues
observed at the scale of a single site per residue can be
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face centered cubic

Fig. 1. Distribution of coordination angles for a representative set of 1000
residue bundles from the PDB, which have been suitably rotated to fit the
fce lattice geometry. The axes refer to the polar (6) and azimuthal (¢)
angles (in degrees) and the surface represents the probability of observing
a first neighbor along a given direction.

construed — by suitable rigid body rotation of the overall
clusters — to fit those of the fcc geometry. The surface in
Fig. 1 represents the probability distribution of the spherical
angles assumed by the directional vectors of the PDB

A simple cubic

clusters at the end of these constrained fit algorithms. The
peaks exactly coincide with the fcc lattice coordination
angles.

Interestingly, calculations repeated for the other four
target lattices yielded results lending support to the applic-
ability of other lattices, as well. See the distributions
presented in Fig. 2 for the sc, bce, hcp and emb lattice
geometries tested here. In all cases, peaks are obtainable
at the angular positions of the directional vectors associated
with the different lattices.

3.2. Quality of the fit to target lattices

Figs. 1 and 2 suggest that different regular geometries can
be adopted for modeling the packing architecture of residues
in proteins. A quantitative measure of their level of accuracy
is the RMS deviation between the actual clusters’ direc-
tional vectors and those of the target lattices. In Fig. 3(a),
the decrease in the RMS deviations as a function of the
number of MC steps is displayed for all five types of target
lattices. The RMS deviations decrease to 0.20, 0.21, 0.25,
0.30,0.37 at 3 X 10° MC steps, for the hep, fcc, emb, bec, sc
cells, respectively. The curves are displayed up to 2 X 10°
MC steps. These are normalized values, i.e. values are
expressed relative to lattice edges of unit size. The RMS
deviations decrease with the increasing coordination

B  body-centered cubic
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Fig. 2. Same as Fig. 1, for four alternative lattice geometries. The 3-D view of the probability distribution is displayed for (A) simple-cubic (sc), (B) body-
centered-cubic (bcc), (C) tetrahedral embedded in simple cubic (emb), and (D) hexagonal close packed (hcp). See Table 1 for the coordination angles
characterizing these lattice geometries. These coincide with the peaks in the respective distributions.
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RMS deviation (normalized)
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Fig. 3. RMS deviations between the PDB clusters and the target lattices as a
function of MC steps are shown in (a). (b) depicts the accompanying
decrease in the RMS deviation between the clusters themselves. The lower-
most curve, labeled as ‘opt’ refer to the results from optimal superimposi-
tion of the clusters, where no target lattice is imposed.

numbers of the target lattice. This is expected since with
larger z values, there are more choices for allocating the
m vectors of the clusters, and a broader coverage of the
coordination space.

Improvement in the suitability of the lattice with increase
in its coordination number is indeed the common
observation [24,25].

It is important to notice that in the present analysis, the
clusters are forced to maximally match the directional
vectors of the target sets, rather than being optimally super-
imposed on themselves. If, on the other hand, the deviations
between the clusters of directional vectors (that have been
rotated to fit the target lattices) are examined, significantly
higher RMS deviations are observed. The reason is the allo-
cation of the clusters’ individual vectors to any possible
choice of the target lattice directions. For example, two
different clusters of m = 6 directional vectors can occupy
two exclusive sets of coordination directions among the 12
accessible directions of the fcc lattice; therefore, the two
clusters would not be superimposed, although they perfectly
match the lattice geometry. The RMS deviations between
the clusters that fit the target lattices are presented in
Fig. 3(b). These are observed to decrease to 0.58 £ 0.02,
starting from original values of about 0.65. The lowermost
curve, on the other hand, represents the result from the
optimal superimposition of the clusters themselves (see

below), not imposing any target lattice assignment. A signif-
icantly lower RMS deviation (0.39) is achieved in this latter
case.

3.3. Threading results

The fit to target lattices has been tested above for a single
coordination sphere around a central residue. Although a
given lattice representation can adequately fit the coordina-
tion geometry at the level of a single coordination sphere, it
may become less adequate when an overall structure is
being fitted because of the geometric constraints at the
juxtaposition of successive lattice sites in space. Further-
more, in compact structures such as proteins, not all coor-
dination sites are accessible, due to their occupancy by other
chain segments. In view of these limitations, we performed
threading calculations following the method originally
proposed by Covell and Jernigan [26]. In this method,
PDB structures are threaded onto a predefined lattice, such
that each residue occupied a lattice site. The level of accu-
racy of the mappings to the five different lattice geometries
will be evaluated from the RMS deviations between the
original structures and their on-lattice representations.

Fig. 4 illustrates the results for two example proteins.
Fig. 4(A) displays the PDB structure (lighter) and the best
fitting (fcc) lattice representation (darker) for an a-protein,
myoglobin (PDB code: 1mba [27]). Fig. 4(B) displays the
X-ray and lattice structures for a (-protein, plastocyanin
(PDB code: Iplc [28]). The respective RMS deviations
between the X-ray and lattice structures are 2.04 and
229 A, respectively, in Fig. 4(A) and (B).

For a systematic study of the accuracy of lattice
representations, calculations have been performed for four
different structural classes of proteins, known as a-, B-,
o + B,- and a/B-classes [29]. Five test proteins have been
selected from each class. These are high resolution
(<25 A) X-ray structures, given that lower resolution struc-
ture, could obscure the results. The C*—C* virtual bond
representation has been adopted for threading the proteins.
The threaded chains are self-avoiding, i.e. no two C* atoms
occupy the same lattice site. The RMS deviations between
the original positions of the a-carbons and their approxi-
mate on-lattice positions are listed in Table 2. The reported
values are the deviations in A, the lattice edge being taken as
38 A (i.e. the length of C*—C* virtual bonds) for the sc, bec,
fcc and hep lattices. In the emb lattice, there are two lattice
lengths, given by 1 and 3'%/2, of which each was multiplied
by 3.8 A.

A summary of the results from threading calculations is
presented in Table 3. Lattices having higher coordination
numbers are again observed to yield closer representations
of the original structure. However, there are important
differences between the levels of accuracy achieved for
different classes of proteins. B-proteins and those belonging
to a + 3- and a/B-classes are harder, in general, to fit onto
sc, and bec lattices compared to a-proteins. This deficiency
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A

Fig. 4. Threading results for two example proteins: (A) myoglobin and (B)
plastocyanin. The backbone is displayed in each case. The lighter diagram
is the X-ray structure, and the darker is its on-lattice representation, after
threading the C*-atoms onto an fcc lattice. The ribbon diagram using the
Midas package is displayed in both cases for visual clarity.

can be partly attributed to the C*~C® virtual bond angle of
120° in B-strands, as opposed to its value of 90° in a-helices
[30]. The former can be readily accommodated by the fcc
and hcp lattice cells (see Table 1); whereas, the sc, and bcc
cells do not comply with 120° bond angles, hence the rela-
tively high RMS deviations observed for -, a + - and
o/B-proteins in the sc, and bcc cases (Table 3). Notice
that the highest RMS deviations take place in the case of
B-proteins threaded onto sc lattices, which can be under-
stood from the fact that the sc lattice does not contain any
coordination angle other than 90°.

3.4. Optimal superimposition of the clusters

Identification of the most probable coordination geometry
of residues requires optimal superimposition of clusters onto
themselves. Fig. 5(A) illustrates the superposition of three

Fig. 5. Schematic illustration of the superimposition of clusters of direc-
tional vectors: (A) for three clusters of coordination numbers 67, and (B)
two clusters of coordination number m = 10.

clusters as an example. Note that the clusters in the figure differ
in their coordination numbers; two of them have seven neigh-
bors, and the third has four. Fig. 5(B) illustrates the super-
imposition of two clusters of coordination number 10 each.

The clusters shown in Fig. 5 actually display the most
highly populated coordination directions obtained upon
optimal superimposition of cluster, for all types of clusters
(Fig. 5(A)), irrespective of amino acid identity and coordi-
nation number, and clusters having coordination number
m = 10, (Fig. 5(B)) usually located in the core of proteins.
The former will be referred to as the generic coordination of
all residues, and the latter as the generic coordination direc-
tions of ‘core’ residues.

A quantitative distribution of the generic distributions
of coordination directions for ‘all’ and ‘core’ residues is
given in the respective maps of Fig. 6(A) and (B). The
maps represent the probability distribution of the spheri-
cal coordination angles 6 and ¢ for the two cases. As
mentioned above, sets of 1000 clusters with required coor-
dination numbers, randomly selected form the PDB, yield
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Table 2

Threading results (RMS deviations in units of /&) for PDB structures belonging to four different structural classes (the results in Ref. [24] for the same analysis

are shown in parentheses)

PDB code Resolution (A) Size sc bee emb fce hep
a-proteins

IAVHA 2.3 318 3.02 2.54 2.52 2.00 2.03
1LE4 2.5 139 2.81 2.25 221 1.96 1.93
IMBA 1.6 146 277 (2.7) 2.44 (2.4) 2.40 2.04 (1.9) 2.11
IMBC 1.5 153 2.82 2.44 2.37 1.97 2.06
2LH1 2.0 153 2.93 2.47 2.41 2.07 2.07
B-proteins

IHILA 2.0 217 5.07 3.51 2.51 2.28 2.48
IMAMH 2.45 217 5.01 3.46 2.79 2.31 2.54
IPLC 1.33 99 4.31 (4.3) 3.99 (2.9) 2.60 2.29 (3.3) 2.20
2AYH 1.6 214 4.35 4.05 2.83 2.62 2.27
S8FABA 1.8 206 5.63 391 2.95 222 2.49
o + B proteins

IDNKA 2.3 250 3.48 4.02 2.68 247 2.44
1PPN 1.6 212 3.82 2.79 253 2.16 2.19
2AAK 2.4 150 3.39 3.73 2.44 2.46 1.96
2ACT 1.7 218 3.90 3.01 2.76 2.24 2.34
4BLMA 2.0 256 3.99 2.78 2.38 2.19 2.14
a/B-proteins

IDHR 2.3 236 3.43 3.23 2.78 2.37 2.16
1FX1 2.0 147 3.39 3.73 2.49 2.37 2.36
1OFV 1.7 169 3.60 3.07 2.42 2.15 2.25
2DRI 1.6 271 3.73 3.08 2.67 2.18 2.15
2YPIA 2.5 247 3.85(3.3) 2.60 (2.8) 2.71 2.20 (2.0) 221

reproducible distributions. The lowermost curve in Fig. 3(b)
shows the significant decrease in the RMS deviation
obtained by MC iterations for ‘all’ clusters.

The centers of coordination obtained for the two groups
of clusters are listed below:

Coordination 1 2 3 4 5 6 7 8 9 10 11 12
state
B=m=14) 6 40 35 45 95 105 55 90° 120
¢ 10 200 285 350 50 115 180" 115
m =10 0 45 45 45 95 105 60 100 85 105 140
¢ 30 170 270 350 50 90 130 230 290 210

* This coordination state emerged from the examination of the packing
geometry of specific residues (unpublished data).

On the other hand, repeating the calculations for the

Table 3
Average RMS deviations (/ok) between databank structures and their models
threaded onto different lattices, for four different classes of proteins

Class sc bee emb fce hcp
a 2.87 2.43 2.38 2.00 2.04
B 4.87 3.78 2.74 2.34 2.40
atp 3.72 3.27 2.56 2.30 2.21
ol 3.60 3.14 2.61 2.25 2.23

densest clusters (m = 12), the following coordination
angles are found:

m=12 6 45 25 50 70 100 75 80 75 105 140 145 130
¢ 60 170 280 340 40 120 160 220 260 200 330 120

which can be compared to the directional angles of the fcc
lattice listed in the last row of Table 1.

Examination of the above sets of optimal directional
angles for the clusters of different coordination numbers
reveals that the coordination angles approximate those of
the fcc geometry. In the former case, only seven sites are
occupied, whereas in the latter case, all sites are occupied.
As a further test of the validity of an fcc geometry that is
gradually filled with increasing coordination numbers, we
investigated the coordination angles of surface residues
(3 = m = 4). The values

BG=m=4 0 40 45 95 90
é 30 170 50 110

were found as the most highly populated coordination
angles. It might be thought that the 12 degrees of freedom
of an fcc lattice could simply afford sufficient flexibility to
realize a good fit. However, the four sites mentioned above
for surface residues are also arranged in a condensed way, in
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conformity with close sites on an fcc lattice. In other words,
not only do they approximate four of the lattice directions of
the fcc packing, but also they occupy nearby fcc directions,
instead of being distributed sparsely over space. Likewise,
the sites identified for all residues (3 < m < 14) are also
clustered on a restricted coordination subspace. These
observations indicate a behavior substantially different
from merely fitting the structure to the fcc coordination
geometry.

4. Discussion

The fit of every other methylene group in polyethylene-
like chains to an fcc lattice is understandable in view of the
fact that the successive bonds exactly conform to a tetrahe-
dral geometry. The fcc lattice can indeed be viewed as a
‘second level’ of tetrahedral lattice. The 12 coordination
vectors of the fcc lattice simply connect a given central
site to its second neighbors along a tetrahedral lattice. Like-
wise, it has been possible to extend the same approach to the
second generation of mapping/reverse mapping [31]. In this
case, every fourth carbon atom along the chain is utilized,
and about 1/12 of the lattice sites are occupied.

In the case of the polypeptide backbone, on the other hand,
the accord with the fcc lattice can be explained by the
geometric features of the virtual bond representation. First,
all virtual bonds have fixed (3.8 A) length, conforming to a
fixed lattice dimension. Secondly, the angle between two
successive lattice sites is either around 90° (a-helices) or
120° (B-strands), in conformity with the lattice geometry
[30], and the most probable torsional angles can also be
approximated by the choices accessible on an fcc lattice
[26]. Whereas in the Ramachandran plots, only a single resi-
due is examined at a time, other analyses capture regularities
over several residues on the main chain. Pal and Chakrabarti
[32] proposed a graphical representation for protein main
chain and side chain torsional angles, which can aid in iden-
tifying backbone regularities. Also efficient analyses have
been proposed by several groups [30,33,34] in which virtual
C“~C*® bonds and pseudodihedrals characterize backbone
structure. These studies emphasize the regularities induced
by the physicochemical nature of the polypeptide backbone.

However, what is unexpected is to see is that the fcc
geometry is also the best fitting regular geometry approxi-
mating the coordination architecture of residues in folded
proteins. The origin of this generic preference is probably
fundamentally different from that of the polypeptide back-
bone. In this case, the non-bonded interactions are regular to
some extent. The fact that this regularity coincides with the
one that maximizes the packing density of identical spheres
suggests that the tendency to assume an fcc geometry origi-
nates in the drive to optimize packing density.

It is worth recalling that the presently emphasized
similarity to an fcc geometry resides in the coordina-
tion angles. The coordination distances, on the other

360

¢ 240

180
120

60

20 40 60 80 100 120 140 160

o, i ] s
20 40 60 80 100 120 140 160

Fig. 6. Results for optimal superimposition of clusters, for two groups of
clusters differing in their coordination numbers: (A) randomly collected
1000 clusters have been analyzed to extract the generic coordination angles
for all residues, and (B) 300 clusters having high coordination number (m =
10) have been used to extract the optimal coordination geometry of core
residues.

hand, were variable. These would vary in the range
3.8=r=6.8A, the lower bound being equal to the
length of virtual bonds, and the upper bound being
the cutoff distance that includes the first neighbors
around a central amino acid, when viewed at the
level of a single site per residue. It is clear that
amino acids differ in their size and shape, but the
present coarse-grained view neglects these differences,
and focuses on similarities in coordination directions.
Significant variations were recently reported at the level
of atomic packing in proteins, which were attributed to a
complex combination of protein size, secondary structure
composition and amino acid composition, and such differ-
ences have been proposed to serve as a measure of structural
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homology studies [35]. Such differences are not discernible,
however, at the presently adopted coarse-grained scale. In
order terms, even the surface residues whose (residue) coor-
dination number (m = 3-4) is significantly lower than that
of core residues (m = 10) are closely packed in conformity
with the accessible sites on the same fcc geometry. Our
results conform to the remarks of Chothia and coworkers
[36] on the occurrence of standard radii and volumes for
residues in folded proteins.

One might wonder if the apparent regular geometry could
be relevant to the crystallographic symmetry group or
refinement methods in determining residue coordinates.
However, such methods should not necessarily introduce a
bias towards the fcc coordination directions, in particular,
because the structures as a whole are fitted to different regu-
lar geometries, rather than the coordinates of the individual
residues.

The emergence of helical motifs in proteins was shown
[37] to be the result of evolutionary pressure for selecting
structures having a high degree of thermodynamic stability,
which can accommodate amino acid sequences that fold
reproducibly and rapidly. Helices satisfy such optimal pack-
ing constraints [20]. The regular packing geometry that can
be traced here at a coarse-grained scale can tolerate substi-
tutions while optimizing residue packing. It remains to be
examined that the effect of evolution on packing geometry
by further studies of the coordination geometry in evolutio-
narily related proteins. For example, evolutionarily distant
and close proteins can be directly examined to see the
effects of evolution. Such systematic analyses should now
be feasible with the increased availability of human or other
species’ genomic data.

As a further study, the extent of the lattice-like regularity
might be expected to be more pronounced with increasing
contents of secondary structures in specific proteins. We
have not performed a direct analysis of coordination geome-
try in the neighborhood of residues belonging to a-helices
or B-sheets. This could be a future extension of the present
analysis. Whereas our threading calculations show that the
fcc lattice can fit equally well different types of structural
classes (Table 3), the improvement with increasing contents
of secondary structure, which is a more detailed study, could
be explored further.
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