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Introduction: Intracellular signaling/synthetic pathways are being increasingly extensively characterized.
However, while these pathways can be displayed in static diagrams, in reality they exist with a degree of
dynamic complexity that is responsible for heterogeneous cellular behavior. Multiple parallel pathways
exist and interact concurrently, limiting the ability to integrate the various identified mechanisms into a
cohesive whole. Computational methods have been suggested as a means of concatenating this knowl-
edge to aid in the understanding of overall system dynamics. Since the eventual goal of biomedical
research is the identification and development of therapeutic modalities, computational representation
must have sufficient detail to facilitate this ‘engineering’ process. Adding to the challenge, this type of
representation must occur in a perpetual state of incomplete knowledge. We present a modeling
approach to address this challenge that is both detailed and qualitative. This approach is termed ‘dynamic
knowledge representation,” and is intended to be an integrated component of the iterative cycle of scien-
tific discovery.
Methods: BioNetGen (BNG), a software platform for modeling intracellular signaling pathways, was used
to model the toll-like receptor 4 (TLR-4) signal transduction cascade. The informational basis of the
model was a series of reference papers on modulation of (TLR-4) signaling, and some specific primary
research papers to aid in the characterization of specific mechanistic steps in the pathway. This model
was detailed with respect to the components of the pathway represented, but qualitative with respect
to the specific reaction coefficients utilized to execute the reactions. Responsiveness to simulated lipo-
polysaccharide (LPS) administration was measured by tumor necrosis factor (TNF) production. Simula-
tion runs included evaluation of initial dose-dependent response to LPS administration at 10, 100,
1000 and 10,000, and a subsequent examination of preconditioning behavior with increasing LPS at
10, 100, 1000 and 10,000 and a secondary dose of LPS at 10,000 administered at ~27 h of simulated time.
Simulations of ‘knockout’ versions of the model allowed further examination of the interactions within
the signaling cascade.
Results: The model demonstrated a dose-dependent TNF response curve to increasing stimulus by LPS.
Preconditioning simulations demonstrated a similar dose-dependency of preconditioning doses leading
to attenuation of response to subsequent LPS challenge - a ‘tolerance’ dynamic. These responses match
dynamics reported in the literature. Furthermore, the simulated ‘knockout’ results suggested the exis-
tence and need for dual negative feedback control mechanisms, represented by the zinc ring-finger pro-
tein A20 and inhibitor kappa B proteins (IkB), in order for both effective attenuation of the initial stimulus
signal and subsequent preconditioned ‘tolerant’ behavior.
Conclusions: We present an example of detailed, qualitative dynamic knowledge representation using the
TLR-4 signaling pathway, its control mechanisms and overall behavior with respect to preconditioning.
The intent of this approach is to demonstrate a method of translating the extensive mechanistic knowl-
edge being generated at the basic science level into an executable framework that can provide a means of
‘conceptual model verification.” This allows for both the ‘checking’ of the dynamic consequences of a
mechanistic hypothesis and the creation of a modular component of an overall model directed at the
engineering goal of biomedical research. It is hoped that this paper will increase the use of knowledge
representation and communication in this fashion, and facilitate the concatenation and integration of
community-wide knowledge.
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1. Introduction

Biological systems have a complex, multi-hierarchical structure.
The current reductionist approach to basic research has success-
fully generated copious amounts of information regarding the ba-
sic cellular and molecular components of biological systems, and
has been able to characterize the relationships between many of
these components. However, there are significant hurdles in trans-
lating this mechanistic knowledge in a way that effectively cap-
tures the dynamic behavior of these systems. This challenge is
most evident in attempts to characterize highly interconnected,
multiple-feedback sub-systems at the cellular and molecular level.
Knowledge of these systems is presently represented primarily in
static diagrams that can be overwhelming in their complexity
(see Oda-Kitano map of TLR signaling in [1]). Mathematical ap-
proaches developed from the study of dynamical systems offer a
method by which these static diagrams can be ‘brought to life.’
However, the application of formal mathematical methods often
results in considerable abstraction of the system under examina-
tion. While this approach can provide elegant descriptions of
underlying principles and behaviors (such as the characterization
of organ level physiology), it can also lead to models that are too
far removed from the actual ‘messy’ details of biology. This gap re-
duces the efficacy of these models with respect to the engineering
goal that drives a great deal of biomedical research. There needs to
be a correlation between the level of resolution of the mathemat-
ical model of a system and the level of any planned intervention on
that system. For example, equation-based models of cardiac func-
tion based on the cardiac myocyte contractile response are suffi-
cient to examine various maneuvers affecting cardiac output so
long as the effect of the intervention can be reliably characterized
in the terms of the contractility equation. However, once the rela-
tionship between the intervention and its effect strains linear cau-
sality (as is the case in attempts to manipulate cellular interactions
at the molecular level), these reduced mathematical models do not
have the sufficient resolution to aid in the evaluation and design of
potential interventions.

The tension between the elegance of mathematical representa-
tion and the mechanistic detail of biological systems has led to the
recognition that there must be a middle-ground where mathemat-
ical tools can be used to examine the dynamics of biological behav-
ior without necessitating removal of too much detail. The areas of
‘translational systems biology’ [2,3] and ‘executable biology’ [4]
have evolved to address this need. In these approaches the applica-
tion of mathematical methods is not directed at formal mathemat-
ical analysis but rather at the development of a computational
analog to the biological system [5,6]. We further extend this con-
cept into an approach we term ‘dynamic knowledge representa-
tion,” in which the goal of model construction is focused less on
the model itself than on computationally representing conceptual
models that represent either an individual researcher’s knowledge,
or, more broadly, the research community’s state of knowledge. As
such, a computational model becomes a dynamic instantiation of a
‘thought experiment’ based upon a particular hypothesis regarding
the behavior of a system [7]. By examining the behavior the model
and comparing it to real-world observations, the computational
models are a means of conceptual model ‘checking’ or verification,
such that a researcher can ‘know what they know.’

With this goal in mind, the structure of biomedical knowledge
can be classified to facilitate translation into a computational
framework. Since the majority of mechanistic knowledge exists
in either the description of biological components (‘objects’) or
the interactions between these components (‘rules’), an object-
oriented, rule-based modeling framework is suited the transla-
tional role required of dynamic knowledge representation.

Although all modeling requires some degree of abstraction, when
dealing with complex systems it is difficult, if not impossible, to
determine a priori where abstractions can be safely made. There-
fore, there is a need to be able to capture the necessary detail of
the system such that mechanistic causality can be approximated
as directly as possible, and for modeling assumptions to be explic-
itly communicated.

The need for this type of representation is further evident when
dealing with multi-scale manifestations of dynamic behavioral
patterns, exemplified in the ‘condensed’ output, that result from
highly parallel control systems. It is highly likely that the true rich-
ness of biological behavior requires these multiple control points
for the ‘fine tuning’ necessary to deal with heterogeneous chal-
lenges, a fact that complicates the investigation of these processes.
The detailed, qualitative method presented in this paper is in-
tended as a ‘middle-ground’ approach to addressing this dilemma.
Some degree of abstraction is necessary to facilitate understand-
ing; the capability for comprehensive representation is necessary
to reproduce biology. The solution is a modular approach that al-
lows for constrained and compartmentalized representation of suf-
ficient detail just at the edge of the ‘fog of complexity,’ but in a
format that will allow subsequent concatenation of models to cap-
ture the richness of biological behavior. Furthermore, the selection
of modeling focus should be made to limit, as much as possible, the
nonlinear assumptions of causality that arise from concurrently
modeling multiple scales of behavior; such types of behavior
should be allowed to ‘emerge’ from the instantiation of underlying
mechanisms. Therefore, the rationale for this focus is that charac-
terizing the properties of the intracellular control points provides
a guide to the state changes of the constitutive actors (cells) in
the inflammatory response. These actors in turn determine, via
their aggregated behavior, the observed phenomenon at higher
levels of biological organization. Understanding the internal mech-
anisms of state changes, or ‘reprogramming,’” provides a necessary
groundwork before attention can be turned to control mechanisms
at the intra-extracellular interface (i.e., receptor modulation) and
beyond (i.e., pro- and anti-inflammatory cytokine milieu). This is
of particular importance if potential interventions are to be devel-
oped to target these intracellular control points; in such a case
(which is inevitable, given the direction of the drug-candidate dis-
covery process) modeling these control points provides a method
of assessing the potential effects of these interventions.

Towards this end, we present a software modeling toolkit called
BioNetGen (BNG) that fulfills these criteria, and present a demon-
stration of detailed, qualitative dynamic knowledge representation
of the toll-like receptor 4 (TLR-4) signaling pathway, and its behav-
ior in the face of preconditioning or ‘tolerance.’

1.1. Modeling method: BioNetGen

BioNetGen is a modeling system that uses graphs to represent
molecules and their functional components and rules to describe
the interactions between molecules [2,8]. The software framework
contains both a text-based interface, and a visual graphics tool
called RuleBuilder with which to construct models. A detailed
description of the BioNetGen software and the associated BioNet-
Gen modeling language has been given in Ref. [8]. An overview
of the rule-based modeling approach and its applications to mod-
eling biological signal transduction has been given in Ref. [9].

Although BioNetGen was originally intended for the develop-
ment of detailed models based on site-specific protein-protein
interactions, BioNetGen is used in this manuscript to provide a
coarser level of description that is appropriate when site-specific
information is not available. Because the mechanistic basis of
many of the protein-protein interactions modeled here remain
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unknown, we have utilized functional descriptions that are in-
tended to represent the current state of available knowledge.
Molecular components in many cases represent functional rather
than physical states, and rules describe how protein-protein inter-
actions modify the functional states of the involved molecules. This
application of BioNetGen to the modeling of TLR-4 signaling can
thus be viewed as an exercise in dynamic knowledge representa-
tion, which attempts to convert information about the proteins in-
volved into a predictive model of system behavior. The model is
dynamic both in the sense that it can predict the temporal behavior
of the system and because it can easily be extended or modified to
incorporate the ever-expanding base of knowledge about TLR-
mediated signaling. BioNetGen provides a particularly convenient
and powerful representation of this knowledge base and provides
simulation capabilities that permit thorough investigation of sys-
tem dynamics.

1.2. Reference system: TLR-4 and inflammation

Toll-like receptors (TLR) on inflammatory cells represent a key
aspect of the body’s initial response to injury and/or infection
[1,10-12]. Activation of these receptors initiates signaling events
that lead to an initial predominance of a pro-inflammatory re-
sponse designed to contain an infectious insult, and also a concur-
rent compensatory anti-inflammatory response intended to limit
the degree of the pro-inflammatory response. The interplay be-
tween response and counter-response can be seen at multiple lev-
els of biological organization. It is present with respect to systemic
levels of mediators and inflammatory cell populations, within local
tissues and individual organs, and also within cells themselves.
This multi-scale robustness is a property of biological systems,
leading to maintenance of the organism’s ‘integrity of self.’ How-
ever, it can also make it difficult to parse out the specific effects
of targeted interventions from one level to another, as is the case
when attempting to translate molecular mechanisms to the clinical
level. Given that this is the area of greatest effort in biomedical re-
search, we focus on the intracellular mechanisms of control of TLR
signaling. This investigation places particular emphasis on charac-
terizing the phenomenon of tolerance or preconditioning, a cell-le-
vel manifestation of biological robustness. It is well recognized that
the response of cells to inflammatory stimuli is affected by a past
history of exposure to lower levels of that stimuli [11-17]. The
dynamics of the preconditioning effect are a dose-dependent man-
ifestation of the pro-inflammatory/positive feedback/amplification
and anti-inflammatory/negative feedback/attenuation pattern
seen in the inflammatory response as a whole. From a teleological
standpoint, such a dynamic of rapid response and subsequent qui-
escence would be evolutionarily favored as a means for an organ-
ism to deal with external threats. Furthermore, there is increasing
evidence that this system is involved with dealing with internal
threats as well, as the responsiveness of the TLR signaling to
endogenous mediators indicating tissue damage suggests the fur-
ther importance of preconditioning in the ‘danger signal’ hypothe-
sis of acute inflammation [18,19]. With this hypothesis the
inflammatory system is viewed as being subjected to a continual
minimal, baseline level of recurrent tissue damage through the
course of ‘normal’ existence. Therefore, tight modulation and toler-
ance is critical to the maintenance of a homeostatic yet responsive
inflammatory response.

The TLR-4 pathway is one of the most intensively studied
inflammatory signaling pathways [1,10]. The control of TLR-4 sig-
naling includes both ‘extracellular’ mechanisms, seen in the auto-
crine and paracrine effects of anti-inflammatory cytokines, such
as Interleukin-10 (IL-10) and transforming growth factor-beta
(TGF-beta), and soluble TLR-4 receptor antagonists, and ‘intrinsic’
mechanisms resulting from the intracellular regulation of TLR-4

signaling in response to stimulus to the bacterial product lipopoly-
saccharide (LPS) [11,13,16,17,20-23]. For purposes of this paper
we focus on the intracellular pathways and intrinsic signaling
modulation of the TLR-4 cascade.

2. Methods
2.1. Model development

A series of review articles on the modulation of TLR-4 signaling
was used to identify the components and rules to be included in
the BNG model, as well as some more focused research articles
to provide mechanistic insight into selected components [1,10-
14,16,17,20-29]. The TLR-4 signaling pathway is an extensive
cascade that interacts with multiple synthetic and metabolic
pathways, and the intent of this exercise is not to produce a com-
prehensive model of all aspects of this system (for this description,
see [1]). The BNG model presented herein is intended to demon-
strate the intracellular feedback effects of a particular sub-system
of the TLR-4 signaling pathway and its contribution to LPS
tolerance.

Control loops were mechanistically modeled by representing
signaling events from stimulus to production of the inhibitory
compound (usually implying gene activation and protein synthe-
sis) and the transport of the inhibitory compound back to the sig-
naling cascade. The production of the negative feedback mediator,
often a protein, was accounted for by modeling transcriptional and
translational events in an abstracted fashion.

For an inhibitory pathway to be included there needed to be at
least some information on the causal mechanisms and intermedi-
ate components involved in the generation of the inhibitory com-
pounds. For instance, it was not sufficient for the literature to
state that ‘increased expression of the gene for Inhibitor X led to
down regulation of TLR-4 signaling:’ this statement does not give
any insight as to how endogenous Inhibitor X was produced, or
what up-regulated gene X in vivo. Also, a statement such as ‘LPS
activation led to increased levels of Inhibitor X' is insufficient due
to the absence of at least some mention of the intermediate steps
involved in the production of Inhibitor X. This modeling require-
ment precluded the inclusion of such competitive inhibitors such
as a shortened version of myeloid differentiation factor 88
(MyD88), MyD88s, and IL-1-associated kinase (IRAK)-M (an inac-
tive isoform of IRAK-1 and IRAK-4) [11,13].

Additionally, if possible, complicated molecular events were re-
duced to a simple state/relationship transition, and therefore were
not explicitly modeled. This was done to reduce model complexity,
and was utilized when evidence in the literature suggested that a
complex, but relatively well-characterized molecular process led
to a relatively straightforward event. This was done with a recog-
nition of the level of detail desired for a particular model, and
therefore could be a source of model inadequacy if subsequent
planned interventions had effects within the abstracted steps. For
instance, the interactions associated with tumor necrosis factor
receptor-associated factor 6 (TRAF-6) involve complicated ubiqui-
tination and de-ubiquitination processes, not only with respect to
its activation but also in terms of interactions with its putative
inhibitor, the zinc ring-finger protein A20 [11,20-23]. However,
the end result of these events is that TRAF6 is activated via up-
stream LPS/TLR-4 receptor complexes, and A20, when present,
inactivates TRAF6. These interactions were modeled as simple
state transitions in this model. If, in the future an intervention
should be identified that centered on the ubiquitination steps of
the A20-TRAF6 interaction, these steps would need to be further
delineated. Because the architecture of the BNG model is modular,
extension of the model in this way would be straightforward.
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It should be emphasized that these guidelines are subjective in
nature, and that the resulting model represents an instantiation of
particular conceptual model of TLR-4 signaling, reproducing the
subjective process that is the primary method biomedical
researchers use to establish the intellectual frameworks for their
investigations. Since all modeling (be it conceptual, computational
or laboratory-based) is to some degree subjective, we focus on the
need to be as explicit as possible with respect to communicating
the underlying assumptions of the model. These assumptions are:

(1) Because the emphasis was on intracellular feedback loops,
soluble TLR-4 receptor antagonists and paracrine/autocrine
effects of cytokines such as IL-10 and TGF-beta were not
considered.

Given the intent to focus on causal, mechanistic control

loops, A20 and inhibitor kappa B proteins (IkB) are the pri-

mary intracellular negative feedback compounds included
in this model [11,13,20-23,26].

The nuclear factor kappa B (NF-kB) activation pathway, via

TGF-beta-activated kinase 1 (TAK1) provides the common

link between upstream TLR-4 signaling and the production

of A20, IkB, and the putative pro-inflammatory output,

tumor necrosis factor (TNF) [11,13].

(4) Although TAK1 activation also leads to signal transduction in
the ERK (extracellular signal-regulated kinase), JNK (c-Jun N-
terminal kinase), and p38 MAPK (mitogen-activated protein
kinase) pathways with the subsequent activation of the
nuclear transcription factor AP-1 (activator protein 1), also
acknowledged to contribute to pro-inflammatory signaling,
the decision was made not to incorporate these pathways
because of the lack of clearly identified intracellular negative
feedback mediators generated by this pathway [1,24]. A cau-
sal mechanistic relationship between AP-1 and other intra-
cellular modulators of TLR-4 signaling could not be
established by the authors’ review of the literature, and
therefore precluded their incorporation into this model.

(5) The lack of explicit information regarding the potential
relationship between these signaling cascades and the
production of other intracellular mediators such as toll-
interacting proteins (Tollip) and suppressors of cytokine sig-
naling (SOCS) precluded their inclusion in this model [25].

(6) Since mechanistic representation of feedback mechanisms
forms a central part of the model, it was necessary to model,
at least abstractly, the processes of gene activation, tran-
scription and protein translation. DNA was abstractly repre-
sented as a molecular species that contained multiple
binding sites representing specific transcriptional domains.
Furthermore, as opposed to the concentrations of the other
molecular species in the model, there were only two copies
of DNA included in the model. As a result, the process of
transcription represented a significant amplification point
in the TLR-4 pathway and its synthetic consequences.

—~
N
—

—~
w
~—

The model was constructed using these guidelines and assump-
tions, and initially produced using the RuleBuilder interface of
BNG. The simulated experiments, however, were implemented
using the BNG text interface due to its greater flexibility in setting
experimental conditions (see below in Simulations and Results for
details). For a more detailed description of setting up experiments
using BioNetGen see Ref. [8]. A graphical depiction of the compo-
nents included in the model, and an example of the RuleBuilder
interface can be seen in Fig. 1. This Figure should give some mea-
sure of the complexity of even this admittedly abstract model. The
model is available for download at http://bionetgen.org/SCAI-wiki/
index.php/Main_Page as a RuleBuilder file, a BioNetGen Language
file, a Systems Biology Markup Language (SBML) file [30]. In addi-
tion, the SBML file and a MatLab file of this model are available for
examination as Supplementary Materials to this text. It should be
noted that the BNG engine automatically generates both SBML
and MatLab files, should the researcher elect those options. The
purpose for providing these outputs is to allow researchers to per-
form detailed mathematical analysis on the model and its behav-
ior. As such, it is expected that the detailed documentation of the
model would occur in the BNGL interface, and the additional files
would serve as adjuncts to the primary model file.

It should be noted that the resulting model is both qualitative
and detailed. It is qualitative in the sense that the rate constants
for the various reactions are rough estimates; quantitative details
of these reaction rates as they occur in the intracellular milieu
are difficult to obtain. It is detailed in terms of the components in-
cluded in the model, and the causal chain of mechanisms that link
those components together. It is our contention that this is an
appropriate balance of detail and abstraction, given the pragmatic
constraints on obtaining quantitative data, and the type of poten-
tial interventions planned (i.e., targeted molecular modulation).
The model includes 31 molecule types and 41 reaction rules, which
altogether generate a network of 76 possible molecular species and
202 reactions. A total of 97 parameters are used for the initial con-
centrations of species and the reaction rate constants. All of these
have been crudely estimated based on order-of-magnitude ranges
for protein expression levels and reaction rates. All proteins in-
volved in the signaling pathway were assumed to be present at a
level of 10,000 copies per cell, dissociation rates were given a de-
fault value of 0.1/s, and association rates were set to 0.001 1/mol-
ecule 1/s, a value that strongly favors binding over unbinding (the
dimensionless equilibrium constant K*Np= 100, where K is the
equilibrium binding constant and Nt is the number of binding part-
ners per cell). After construction of the model, experiments were
run using the command-line BNG interface due to the increased
flexibility offered in terms of defining experimental conditions.

3. Simulations and results

For all of the simulations the initial number of protein copies
per cell (set using seed species in the BNG input file) is set to

>

Fig. 1. (A and B) Schematic diagram of the components and functions of the BioNetGen TLR-4 signaling model, and an example of the RuleBuilder interface for a component of
the model. (A) This figure demonstrates a highly abstracted schematic of the components and interactions of the BNG model. The various states of the molecules are not
represented, nor the individual binding sites, and the molecular interactions/reactions are generally depicted using the following legend: solid black lines: denote molecule-
to-molecule binding; circular nodes at convergence of solid black lines: denote complexes composed of attached molecules; solid blue arrows: denote activation processes;
solid red arrows: denote inhibitory processes; red ‘X's’: denote targets of inhibition; dashed blue arrows: denote transport or change in location of molecular species. Also,
there are two points where pathways converge/diverge and signals can follow either path. These points can be seen as green ‘Or’s set in diamonds. These are seen at the
divergence of the TLR-4-dimer binding to either MAL or TRAM, and at the convergence of these two pathways as TRAF6 is bound to either of the TRAM-TRIF-RP1 or MAL-
MyD88-IRAK1-IRAK4 complexes. The negative feedback components are A20, acting on TAK1 and Ixx, and IkB, which is constitutively bound to NF-xB. (B) This figure
demonstrates what the actual RuleBuilder rules look like for a specific section of the above pathway. The region represented is a portion of the TRAM-TRIF-RP1-TRAF6 arm of
the signaling pathway, specifically the binding of the TRAM-TRIF-RP1-TRAF6 complex to the TLR-4-dimer and the activation by this complex of TAK1. Molecular species are
represented at smoothed rectangles; binding sites are represented as small circles within the molecule. Open binding sites are shown as open circles; darkened circles
represent occupied binding sites. The first row demonstrates the rules for binding of the TRIF-RP1-TRAF6 complex to the TLR-4-dimer. The second row shows the activation of
TAK1 by the TRAM-TRIF-RP1-TRAF6 complex, this function denoted by the change of the activation site on TAK1 from ‘Activation~No’ to ‘Activation~Yes.’ (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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10,000. The initial number of DNA molecules per cell is set to 2,
with each of the DNA strands having multiple promoter binding
sites. An initial equilibration simulation was then run in which
the LPS stimulus was not present in order to allow the baseline
state of the cell to be reached; specifically, this permits formation
of the transcriptionally inactive IkB-NF-kB complex. (The BNG text
interface and RuleBuilder both allow for this equilibration phase
during the experimental setup.) Specific experimental conditions
were set by adding various levels of LPS after the equilibration
phase.

The first series of simulations consisted of determining the dose
response for output of TNF to lipopolysaccharide (LPS) at doses of
10, 100, 1000 and 10,000 molecules per cell. In these simulations a
single ‘dose’ of LPS at each level was added immediately after the
equilibration phase. Next, preconditioning behavior was evaluated
by re-dosing the model with a high dose of LPS (=10,000) at
100,000 s (=27.8 h) following initial preconditioning doses of LPS
at 10, 100, 1000 and 10,000. The preconditioning simulations
added a section of code to the end of the dose response simulations
to reproduce the effect of the second LPS dose. The simulation fol-
lowing the initial dose of LPS progressed as before, but at the pre-
determined interval (=100,000s) the values of the molecular
species were saved to record the state of the model at this point.
This in turn became the new ‘initial conditions’ for a second dose
of LPS (=100,000), with a resulting response following as the model
continued on for another 100,000 s. This second response curve,
representing the ‘post-pre-conditioning’ behavior, is presented in
Fig. 3.

The model exhibited the anticipated dose-dependent TNF re-
sponse to perturbations with increasing levels of LPS at 10, 100,
1000 and 10,000. The results of these runs can be seen in Fig. 2.
Next, the model demonstrated preconditioning behavior in the
form of tolerance. These results are presented in Fig. 3. With
increasing doses of LPS from 10 to 10,000 there is increased atten-
uation of the response of LPS at the dose of 10,000. This is the ex-
pected behavior based on the reported tolerance response in the
literature [27].

The detail of the model allowed the examination of the dynam-
ics of each component of the signaling pathway to permit evalua-
tion as to how those dynamics might contribute to the higher level
phenomenon of tolerant behavior. Initially focus was on the two
negative feedback components within the model, A20 and IkB. It
is important to note that the production of both of these mediators
is dependent upon the forward propagation of the inflammatory
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Fig. 2. Dose dependent TNF response to single dose of LPS. This figure demonstrates
the initial response of the model in terms of produced TNF to progressively greater
doses of LPS. There is a clear dose-dependent response curve seen to the challenges
of LPS = 10, 100, 1000 and 10,000.
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Fig. 3. Dose dependent preconditioning-tolerance effect of TNF response to
subsequent challenge of LPS. This figure demonstrates the response of the model
in term of TNF production following a second administration of LPS = 10,000 after
initial doses of LPS =10, 100, 1000 and 10,000. The second dose is administered
approximately 27 h after the initial dose. The amplitude of the TNF response at the
second LPS challenge decreases as the initial preconditioning dose is increased,
suggesting that greater tolerance is seen with higher preconditioning doses of LPS.
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Fig. 4. Dose dependent A20 response to single dose of LPS. This figure demonstrates
the initial response of the model in terms of produced A20 to progressively greater
doses of LPS. There is a clear dose-dependent response curve seen to the challenges
of LPS = 10, 100, 1000 and 10,000. Since A20 is a negative feedback inhibitor of the
TLR-4 response to LPS this direct relationship between A20 levels and LPS challenge
is as expected.

signal via NF-kB. The pattern of A20 expression shows the ex-
pected dose-dependent pattern in Fig. 4, which demonstrates
A20 expression dynamics at doses of LPS=10, 100, 1000 and
10,000. This is as would be expected in a classic negative feedback
loop for the forward signal of LPS. The dynamics of A20 expression
with respect to the response to a second LPS challenge after a pre-
conditioning dose are also consistent with ‘tolerance,” as seen in
Fig. 5, which demonstrates A20 response to a second LPS dose of
10,000 after preconditioning at LPS = 10, 100, 1000, 10,000. Since
A20 itself is not significantly produced following preconditioning,
this suggests that while A20 is primarily responsible for the atten-
uation of the initial response to LPS (see below for discussion
regarding Fig. 8), it cannot be responsible for the ‘memory’ of the
system that leads to the tolerance effect. If this is the case, then
the primary effector of tolerance must be the only other negative
feedback mechanism in the model, IkB.
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Fig. 5. Dose dependent preconditioning-tolerance effect of A20 response to
subsequent challenge of LPS. This figure demonstrates the dynamics of A20 in the
same conditions used to examine TNF in Fig. 3. As with the TNF response, there is an
increased tolerance with increasing LPS doses. However, as opposed to the effect of
A20 on the initial dose of LPS, the decreasing levels of A20 during the tolerance
phase suggests that it cannot be the mechanism by which tolerance occurs.

With the need to invoke an additional negative feedback mech-
anism to generate tolerance, the question arises as to whether tol-
erance should be treated as an additional behavior to be selected
for in order for its evolutionary development? The answer is sug-
gested when experiments mimicking an IkB ‘knock-out’ system
are simulated. This is done by shutting off the IkB transcription
step, and examining the dynamics in response to LPS=10,000.
The results can be seen in Fig. 6. Panels A, B and C show the stan-
dard system (IxB intact) response to LPS = 10,000 of TNF, A20 and
Active-Nuclear NF-kB. The response of TNF, A20 and Active-Nucle-
ar NF-xB in the ‘IxkB-knockout’ can be seen in Panels D, E and F.
What is readily apparent is that in the ‘IxB-knockout’ A20 reaches
an equilibrium state where there is enough NF-kB activity to main-
tain A20 at suppressive levels. However, since NF-kB also produces
TNF, TNF production is never completely suppressed (D). This sug-
gests that a single stimulus-dependent negative feedback loop is
insufficient to completely control the forward response. Further-
more, the addition of the second control loop in the form of a
dis-inhibition activation mechanism for IxB, which is necessary
in order to effectively attenuate an initial stimulus, concurrently
produces the tolerance effect.

The importance of the dis-inhibition mechanism of IxB regula-
tion of NF-xB can be seen in ‘A20-knockout’ simulations repre-
sented in Fig. 7, where Panels A, B and C demonstrate TNF, free
IxB and Active-Nuclear NF-kB at LPS = 10,000. As opposed to the
dynamics of A20 alone, IkB by itself is able to attenuate TNF pro-
duction, albeit at a lower level that in conjunction with A20, and
without the secondary rise in TNF production starting at
~20,000s. NF-xB activity is almost completely (but not com-
pletely) suppressed as IkB levels continue to rise (Fig. 7B and C).
The fact that IkB levels do not appear to reach equilibrium likely
represents an artifact in the model, but one that, fortuitously, re-
sults in realistic behavior, as will be explained in the Discussion.
For the moment, however, the model appeared to function ‘realis-
tically’ insomuch that the recovery from the inflammatory signal
resulted in the non-perturbed state of completely bound and
inhibited NF-xB complex.

The further consequences of the dual control nature of the mod-
el can be seen by examining the differential dynamics of the vari-
ous signaling components at points of control and amplification.
Fig. 8 presents with the response to an initial LPS = 10,000, show-
ing the dynamics of the negative effectors, A20 (Panel A), kB

(Panel B), the first two amplification points of the signaling cas-
cade, TAK1 (Panel C) and Ikk (Panel D) activation, and the latter
control target, Active-Nuclear NF-kB (Panel E). TAK1 and Ixk are
the points where A20 exercises its negative feedback effects, while
IKB suppresses Active-Nuclear NF-kB. The dynamics of TAK1 and
IKk can be seen to have three distinct components:

1. The first very sharp up-stroke represents initial activation via
the inflammatory signal, prior the production of negative feed-
back compounds.

2. The second very sharp decrement represents the direct negative
feedback as both A20 (see Panel A) and IkB (see Panel B) rise
initially. Note that A20 likely has the predominant effect at this
point due to the very low amplitude of the IkB spike.

3. The third phase of the response occurs at a transition point
between effective suppression of TRAF6 and failure of this sup-
pression resulting from the progressive degradation of A20; the
A20 inhibition of TRAF6 is not an irreversible reaction and the
fall of A20 below its equilibrium point allows ‘recovery’ of the
TRAF6-mediated activation of TAK1, and subsequently Ikx.
Since these are amplification points, small amounts of TRAF6
lead to a persistent rise in the levels of both of these com-
pounds. The persistent rise of both TAK1 and Ikx is an artifact
resulting from the fact that baseline degradation of these com-
pounds is not explicitly modeled in the current simulation.

These dynamics suggest an upstream role, both mechanistically
and temporally, for A20 in suppression of TLR-4 signaling. This ef-
fect, however, is lost as A20 production is concurrently decreased
below the point at which it can effectively suppress ongoing
TRAF6-mediated TAK1-Ixk activation. In fact, this is a necessity,
as the inhibition by IkB of NF-xB activity needed to attenuate
the TNF response (demonstrated in the discussion above regarding
IkB-knockout and Fig. 6) also attenuates the expression of A20. On
the other hand, the effective restoration of inhibitory levels of IxB
requires the loss of NF-kB suppression by A20. It is these levels of
IxB that confer ‘memory’ to the system in the form of tolerance.

As mentioned above, there is a persistent increase in the levels
of TAK1 activation, IxK activation, and IxkB expression in the cur-
rent model. All these phenomena result from extremely low, per-
sistent levels of a generative compound (TRAF6 in the case of
TAK1/Ixx, and Active-Nuclear NF-xB in the case of IkB) coupled
with the lack of modeling the baseline state as a dynamic equilib-
rium. In the absence of a stimulus-independent mechanism for
their removal, these compounds ‘build up’ as long as there are even
extremely low levels of their generative compounds present. While
this is recognized as an artifact of the current model, we believe
that it does not invalidate our conclusions about the relative roles
of the two negative feedback control mechanisms or the need for
both pathways to effectively process the initial signal and bring
about tolerance.

4. Discussion

The greatest progress in biomedical research in the last half
century has been in the investigation and characterization of the
molecular machinery of cellular behavior. In some ways, this
reductionist, analytical endeavor reached its culmination with
the sequencing of the human genome. However, as with all impor-
tant scientific achievements, the completion of the human genome
project ended up generating more questions than it answered,
namely, how does it all fit together when the machinery actually
runs? Unfortunately, to a great degree, the biomedical research
community remains embedded in the same reductionist paradigm.
It is becoming increasingly clear that perhaps one aspect of the
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Fig. 6. (A-F) Dynamics of TNF, A20 and Active-Nuclear NF-«B in response to LPS = 10,000 in both ‘wild-type’ and ‘IkB-knockout’ model versions. Panels (A-C) demonstrate
the responses of TNF (A), A20 (B) and Active-Nuclear NF-xB (C) in the ‘wild-type’ intact model. Panels A and B reproduce the responses seen above in Figs. 2 and 4 for both TNF
and A20. Panel C demonstrates the rapid activation and subsequent attenuation of Active-Nuclear NF-kB, the necessary activator for both TNF and A20 production. Panels (D-
F) demonstrate the responses of TNF (D), A20 (E) and Active-Nuclear NF-kB (F) in a simulated ‘IxB-knockout’ model. In this model the rate constant for kB translation was
turned to ‘0’ thus preventing the production of any IkB in response to the LPS signal. As can be seen in (D) and (E), the rates of production of both TNF and A20 rise with the
initiation of the LPS signal and then plateau, denoting an equilibrium point between production and set degradation. The reason for this can be seen in (F), where Active-
Nuclear NF-kB rises, decreases as A20 exerts its negative feedback effect, but then plateaus as well in an equilibrium state. The development of this type of equilibrium state is
consistent with the fact that the inhibitory effect of A20 requires its continued production via signal propagation leading to Active-Nuclear NF-kB. Since Active-Nuclear NF-kB

also leads to TNF production, TNF production is never shut off in this model.

scientific endeavor, the ‘taking apart’ analytical component, has
reached its limit, and it is now time to turn to developing the inte-
grative synthetic aspect of science [31,32]. The process of synthesis
has always been part of science; it is the integration of data and
formulation of hypotheses that occurs in the mind of a researcher.
However, thus far it has also remained a process that primarily re-
lies upon intuition and insight. Admirable as those capabilities may
be, they are increasingly challenged by the complexity of the sys-
tems they are asked to act upon. There appears to have been a pla-
teau in the efficiency of being able to infer ‘causality’ between
events at the molecular level and the behaviors at the organism

level, as noted in the U.S. Food and Drug Administration’s ‘Critical
Path’ statement [33]. Given the complex, multi-hierarchical struc-
ture of biological systems this should not seem surprising. But it is
only relatively recently that formal synthetic methods, mostly
based on mathematical and computational approaches, have been
applied to this translational challenge [2-4,32,34].

This translational approach hinges on two realizations: first,
that there is no current substitute for human intuition for the for-
mulation of integrative hypotheses (i.e., conceptual models), and
second, what is lacking is the ability to test or ‘check’ these concep-
tual models before attempting to implement them in the real
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Fig. 7. (A-C) Dynamics of TNF, ‘Free’ IxB and Active-Nuclear NF-kB in response to
LPS = 10,000 in ‘A20-knockout’ model. These figures demonstrate the effect of
shutting off A20 production (accomplished in a similar fashion as in Fig. 6D-F by
setting the A20 translation rate constant to ‘0’) on TNF (A), ‘Free’ IkB (= IkB that is
free to bind to NF-kB and inactivate it) (B) and Active-Nuclear NF-xB (C). As
opposed to the A20 dynamics, IkB appears to be able to directly attenuate the TNF
response to LPS, albeit with a slightly higher peak value (compared to Panel 6A) and
the loss of a second ‘bump’ in TNF production seen at time ~20,000 s. The general
similarity between Panels 6A and 7A would seem to suggest the predominant role
of IkB in determining the overall dynamics of control of NF-kB activation. The
dynamics of ‘Free’ IkB inversely mirror the levels of Active-Nuclear NF-kB, as ‘Free’
IxB appears to move towards a limit, while Active-Nuclear NF-xB approaches but
never quite reaches 0. This may represent an artifact of the model, as the dynamic
equilibrium state of kB in a non-perturbed state is not included in this model.

world. The first realization means that there is no ‘free lunch;’ i.e.,
the application of brute force computational power to massive
reams of data is unlikely to result in meaningful mechanistic in-
sight, as this type of analysis only leads to correlation, not causa-
tion. On the other hand, the latter realization has been present in
the engineering community for half a century, represented by the

transition from prototyping to simulation as a means of product
development. The application of the engineering paradigm to bio-
medical research thus mandates the development of tools that can
dynamically represent a researcher’s knowledge (expressed as a
conceptual model) to allow visualization of what is believed to oc-
cur is actually allowed to occur in the form of a simulation. This is
termed ‘conceptual model verification,” and is a critical step in the
process of understanding the behavior of dynamical systems. In
addition to allowing a researcher to ‘know what they know,’ the
dynamic instantiation of a conceptual model may also lead to the
realization that enough current knowledge exists to explain behav-
iors that may seemingly call out for more components.

The behavior of the model presented herein gives examples of
all these benefits of translational knowledge instantiation. The
BNG/RuleBuilder interface readily allows the translation of a con-
ceptual model of TLR-4 signal transduction (represented in dia-
grams) into a computational model. The BNG TLR-4 model is
both highly detailed in terms of its represented components and
qualitative in the representation of the interactions between those
components. The execution of the BNG TLR-4 model produces rec-
ognizable behavior in terms of responsiveness to varying stimulus
(LPS), and in terms of preconditioning behavior manifest as toler-
ance. Furthermore, examination of the behavior of the model also
provides insight into how the various control mechanisms of
TLR-4 signaling lead to the observed behaviors. The structure of
the model (as derived from the literature) pointed to an area of
interest with respect to the negative feedback actions of IxB and
A20, the differences between their mechanisms and sites of action,
and the dynamic consequences of those differences. The first
important fact is that both A20 and IkB form classic negative feed-
back mediators in so much as they depend upon an initial forward
propagation of the perturbation signal for their production (facili-
tated via NF-kB). However, the means by which either influences
its negative feedback effect differs. A20 acts directly on two points
centered on the key signal amplification point of the TLR-4 signal-
ing pathway: reducing TAK1 activation by de-ubiquitination of
TRAF6, and deactivating activated Ikk. These represent relatively
‘upstream’ points of the TLR-4 pathway (see Fig. 1A). IkB, on the
other hand, acts farther ‘downstream’: binding and inactivating
NF-kB and decoupling NF-kB from DNA, points distal to the key
amplification step at TAK1/Ikk.

Model behavior suggests that the presence of these two control
mechanisms leads to a dual pattern of negative feedback, where
A20 is an ‘early’ negative switch that attenuates the initial signal
propagation, whereas IkB represents the ‘memory’ component of
the system responsible for the tolerance behavior. The question
arises that if IkB alone can accomplish the general response of ini-
tial signal attenuation, what additional role does the A20 pathway
have? The answer lies in the ‘fine tuning’ that these systems are
likely to evolve under the selection pressure to maintain robust-
ness. The presence of multiple signal amplification points in the
cascade and the fact that negative feedback equilibrium dynamics
alone are not capable of completely suppressing levels of upstream
activation events require multiple levels of control to effectively
modulate the response. The implication with respect to the devel-
opment of therapies targeting intracellular signaling is that parallel
control mechanisms may make the cellular response relatively
impervious to the modulation of individual steps in the signaling
pathway.

Future versions of this model will include the baseline equilib-
rium dynamics in the pre-perturbed state, the omission of which
creates artifacts in the current model for TAK1, Ikk and IxB
dynamics. Also, there are implications regarding the need to be a
‘closed’ as possible when modeling cellular signaling; too many
times the life-cycles of inhibitory compounds do not receive the
sufficient attention and are therefore cannot be effectively
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Fig. 8. (A-E) Dynamics of A20, ‘Free’ IxB, Activated TAK1, Activated Ixk and Activated-Nuclear NF-xB in response to LPS = 10,000 in ‘wild-type’ model. These panels
demonstrate the relative effects of A20 (A) and IxB (B) on the upstream amplification of the LPS-TLR-4 signal, as seen in the dynamic of activated TAK1 (C) and Ixk (D), and on
the downstream effector of gene activation, Active-Nuclear NF-kB (E). The dynamics of TAK1 and Ixk have three distinct components: (1) The first very sharp up-stroke
represents initial activation via the inflammatory signal, prior the production of negative feedback compounds. (2) The second very sharp decrement represents the direct
negative feedback as both A20 (see Panel A) and IkB (see Panel B) rise initially. Note that A20 likely has the predominant effect at this point due to the very low amplitude of
the IkB spike. (3) The third phase of the response occurs at a transition point between effective suppression of signaling through TRAF6 and failure of this suppression
resulting from the progressive degradation of A20; the A20 inhibition of TRAF6 is not an irreversible reaction and the fall of A20 below its equilibrium point allows ‘recovery’

of the TRAF6-mediated activation of TAK1, and subsequently Ikk. Small amounts of TRAF6 lead to a persistent rise in the levels of both of these compounds.

included in this type of mechanistic model. The exclusion of these
inhibitors, however, does not obviate the need to represent signal-
ing pathways with some relatively high degree of detail. For in-
stance, in this model only the explicit representation of the
multiple amplification and feedback points in the pathway could
give insight into the true dynamics of the system. A simple feed-
back/saturation model might be able to ‘reproduce’ the general
dynamics of the system, but to do so would provide scant insight
into the actual behavior of the system.

Furthermore, we believe that this detail is important in that suf-
ficient detail be included at a ‘uni-scalar level’ prior to invoking
multi-scale mechanisms to explain a particular behavior. For in-
stance, the current model is ‘longitudinally’ detailed; each step in
the closed-loop pathway is represented and is able to generate

the richness of behavior observed at a much higher levels. All this
is done without invoking parallel pathways or autocrine/paracrine
effects, or stochastic cellular population dynamics.

It should be noted that these types of conclusions remain spec-
ulative. The dynamics of TAK1/Ikk response, early attenuation by
A20, and the ‘memory’ effect of IkB with respect to preconditioning
may not be ‘correct.” However, they are ‘emergent’ behaviors de-
rived from instantiating what is a relatively canonical representa-
tion of TLR-4 signaling. Validation of the model will come when
a researcher confirms these behaviors in the lab. However, in turn,
this type of computational result may suggest that these are the
experiments that need to be done. Thus, it should be emphasized
that the place for these computational models are as adjuncts to
more traditional laboratory research; there exists an iterative loop
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of discovery and validation between these two methodologies, be-
tween analysis and synthesis [31,35,36]. Drawing on the experi-
ence of physics, these computational models can be viewed as
forming the ‘theoretical’ arm of biomedical research, as a way to
speculate and create ‘thought experiments’ that can, in turn, help
guide and direct wet lab experimental efforts. Furthermore, the ex-
plicit representation of conceptual models in this fashion can be
used as a means of communicating and comparing hypotheses
and their underlying knowledge. It is hoped that the increased
use and distribution of modeling methods such as BNG, will lead
to their increased integration into the general research process.
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Appendix A. Supplementary data

The RuleBuilder, BioNetGen language and SBML files of the
model presented in this manuscript can all be downloaded from
http://bionetgen.org/SCAI-wiki/index.php/Main_Page. In addition,
the SBML file and a MatLab file of the model are available in the on-
line version, at doi:10.1016/j.mbs.2008.08.013.
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