• Sequencing and genome assembly

- Advantages of paired end sequencing
- Graph representations for genome assembly
 - Know how to build a deBruijn from reads

• Alignment

- Dynamical programing for global and local alignments
- \circ Scoring matricies
 - Log-odds scoring: What do the numbers in BLOSSUM PAM represent?
- Multiple alignments
 - Scoring: sums of pairs and weighted sums of pairs
 - Progressive alignments
 - Clustalw gap penalty adjustments

• Molecular evolution

- Relationship between time and observed number of changes
- \circ Saturation
- Jukes Cantor and Kimura model—know the basic assumption—equations will be provided if needed
 - Transitions vs transversion
- Variability in substitution parameters
 - Different genomic regions have different evolutionary rates
 - Changes in nucleotide distribution: GC content varies over evolutionary time
- Synonymous vs non-synonymous
 - Remember: Ka/Ks and dN/dS are different names for the same thing!
 - What does dN/dS>1 mean? How often is it observed in practice?
 - When is it not possible to computer dN/dS accurately, what does it mean for dS to be saturated?

• Phylogeny

- UPGMA: know how it works and what the limitations are
- Neighbor Joining: know the theoretical guarantees, formulas will be provided if needed
- Maximum parsimony: know the procedure and understand its weakness-long branch attraction
- Which methods produce rooted and unrooted trees. How do we pick a root?

• Gene expression

- What do microarrays measure? What is the relationship between microarray quantification and transcript abundance?
- Normalization methods: quantile and loess normalization (discussed in the classification lecture), quantile-quantile plots

- Statistical testing for differential expression: T-test, linear models
- Moderated T-test: understand basic principle—no need to memorize formulas

• Multiple hypothesis corrections

- P-value distributions
- FWER and FDR definitions
- Bonferroni correction
- Methods for computing FDR: Benjamini-Hochberg, q-value, permutation based
- Clustering
 - Goals for clustering gene expression data
 - Clustering algorithms, pros and cons of each
 - Hierarchical clustering
 - different linkage methods (complete, average, single)
 - k-means clustering
 - limitations
 - Mixture of Gaussians
 - What parameters are estimated by different models
 - What are the limitations

• Statistics for sequence based data

- o ChIPseq
 - How does the experiment work
 - What is the basic output
 - How do we find peaks? What do these peaks represent?
 - Poisson distribution.
- o RNAseq
 - What does the number of reads from a transcript depend on?
 - Understand RPKM normalization
 - Negative binomial distribution—how is it different from Poisson?

• Genetic variants in population

- Definitions of genotypes, alleles, haplotypes, linkage disequilibrium
- Algorithms for haplotype inference, Clark's algorithm, PHASE
 - Key idea: leverage the similarities across individuals in genomes as can be seen in LD blocks
- Population structure
 - HWE, genetic drift
 - STRUCTURE, PCA for detecting population structure
- Understanding the link between genotypes and phenotypes
 - Pros and cons in family-based and population-based methods
 - o Linkage analysis, single-locus

- o GWAS
 - case-control studies (discrete valued phenotypes): chi square test
 - quantitative trait locus analysis (continuous valued phenotypes): regression analysis

• Structural variants and how to detect them

- o Approach based on paired-end sequencing
- Approach based on read depths
- Approach based on split reads
- Motif detection and discovery
 - $\circ~$ PWM, PSSM, scanning the genome with PSSM
 - MEME for motif discovery
 - Gene regulatory networks
 - o Cis/trans regulatory elements and their variation
 - Cis/trans eQTLs
 - Allele-specific expression

Probabilistic graphical models: Module networks