Gene expression



Microarrays

* Each cell has the same genome but doesn’t use it in the same way

* We can predict structural protein features from sequence and assign
molecular function but some questions are difficult to answer looking
at sequence

* Sequence: thisis a kinase with a an SH2 domain
* Functional genomics: What tissue/organ/conditionis this gene expressed in?

* Given the sequence of genes in the genome we can measure their
simultaneous activity in a sample of interest

* Possible questions
* What genes are different between cancer and normal tissue
 What genes are required for response to ionizing radiation



How it works

Complementary hybridization:
- Put a part of the gene sequence on the array
- convert mMRNA to cDNA using reverse transcriptase

'T‘\CGCCAAGCTTATG('\ actual gene

AGCGGTTCGAATACC cDNA

<© Fluorescent probe for
quantification

\ reverse transcr 1ptase

UCGCCAAGCUUAUGG mRNA



Type of arrays

Spotted (old) —probes are synthesized and
then deposited
Oligonucleotide— probes are synthesized in
place
2-channel
« Two mRNA samples (reference, test) are
labeled with fluorescent dyes (Cy3, Cy5)
and allowed to hybridize to array
* No comparisons across probes
Single channel
* One sample is hybridized
* Intensityis related to total abundance
Most arrays today are single channel
oligonucleotide

reference

test
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RNAseq vs microarray

 RNAseq-direct sequencing of

A Depth: 50M, Probes: extended
MRNA N

* Don’t need to know what you are 5

looking for 3
 No probes §°
* More certainty that you are ; o 5

detecting specific genes > |2
* Not based on fluorescent read E g :

out-better dynamicrange 2 E

* Microarray vs RNAseq o i e

* Transcript misidentification

° I _ I
Saturation — low and hlgh end A comparison of RNA-seqand exon genome

transcription profiling of the L5 spinal nerve
transection model of neuropathic pain in the rat
arrays for whole



Microarray background estimation

* Past some intensity point detection is not
reliable

* General rule: for mammals about half of all
possible genes are expressed in any given
tissue/organ

e Use distribution characteristics to filter out
unreliable measurements

* Signal intensity is modeled as a convolution
of a normal and exponential distribution

* lllumina beadArray chips provide a
detection p-value

* These are often very close to a distribution
based estimate

T p=0s85

1111111111
RNA-seq expression (RPKM): Naive

Intensity = Background + Signal
N(u,0?) Exponential(c)

......

log2{pm(Data))



Normalization

* We want to measure mRNA i
abundance but we measure =T i
fluorescence intensity - fk i ¢

* Intensity is related through $ s ?},&
abundance through some . B\
arbitrary function RN

* This function depends on many ] J} T
experimental parameters and is ° x ]
different for different samples 6 8 il

og intensity

* We have: A=F(1))

* Ideally we would like: A:=F(l;)—all
the functions are the same—
though they still don’t report
true intensity



Normalization
* Many methods have been proposed

* Most widely used is quantile normalization

* Force the distributions to be the same by
assigning the gene in each rank to the
median value in that rank (not necessarily
the same gene) across samples
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Quantile normalization

e Assumption—abundance distributions are the same
 May be very far from true for different tissues!
* Not true in general

e Sophisticated methods can normalize just a subset truly equivalent
genes

* Can be applied to other datatypes

* Works best when you set of measurements is large and complete—
not preselected to test a specific hypothesis



Quantile normalization—biggest assumption

* Mapping of abundance to intensity is monotone! —intensity value
depends only on the true abundance

* This is not true and is sample dependent

* One important factor: GC content of sequence which affects:

* cDNA synthesis
* Hybridization kinetics

* Non monotonicity factors must be known and modeled explicitly
* Many methods mode GC content



Statistical inference

* Now that the data looks good what can
we say about the biology

* Simplest experimental design 2 groups
* T-test—signal to noise ratio =

e Has T distribution when the two means o
are actually equal X

. gt g2
* Assign p-value —small p-values means Tg = |
the T statistic was very unlikely for equal 1 1
means Sg
* We did an experiment and found 150 \' ny Ny

genes are differentially expressed with a
p-value<0.005

* |s this a good result? - /0
We measured 30,000 genes A significant : Pronboe;bly ,!\
’ difference ' __j_/ ]

= - < =




Type |/ Type |l Error

Your Statistical True state of null hypothesis
Decision
H, True H, False
No difference between means Difference between means
Reject H,
Conclude that samples are different COffECt

Do notreject H,
(ex: you conclude that there is Correct

insufficient evidence that the samples
are different))



Testing many hypothesis at once: Error rates

* Per-family Error Rate

PFER = E(V)
* Per-comparison Error Rate -

PCER = E(V)/m M# true H # non-true H [totals
* Family-wise Error Rate V

FWER = p(V > 1) H rejected (Type 1/big S R

mistake)
* False Discovery Rate
_ H# not
FDR = E(Q), where , 4 U m - R
Q=V/RifR>0; rejecte

Q=0#R=0 totals Mo m1 m




Adjusted p-values

* If interestis in controlling, e.g., the FWER, the adjusted p-value for
hypothesis H; is:

p;” = inf {a: H; is rejected at FWER o}
* Hypothesis H; is rejected at FWER o if pj* <



Correction procedures

* m is the total number of tests

* Bonferronisingle-step adjusted p-values —controls FWER—probability
of making at least one Type | error

p* = min (mpj, 1)

* Benjamini & Hochberg (1995): step-up procedure which controls the
FDR under some dependency structures

pri* = miny_; o {min (Im/k] pr,, 1) }
* |n practice

* Sort p-values from smallest to largest
* Multiplythefirstby m, the second by m/2, the third by m/3 ....
* Each p;* isat mostthe minim of the ones after it --monotonicity



Visual interpretation
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Q-value

Storey & Tibshirani, PNAS, 2003
Empirically derived — uses the p-value distribution
Storey's method first estimates the fraction of comparisons for which the nullis true, r,,

countingthe number of P values Iarg(er than a cutoff A (such as 0.5) relative to (1
- A)N (such as N/2), the count expected when the distributionis uniform

Multiply the Benjamini & Hochberg FDR by i, strictly less conservative

a Distribution of unadjusted P values b Definition of FDR
Effect absent Effect present Both
10% effect chance i

a
C  Estimate of 1y and FDR

O,
50% effect chance B ~ Assume effect

¥~ absent for P > A
FDR ¢ Determine boundary
~aNmy/R | 1o estimate xj
............................... .._— ~NJTO
: tests are
[TTITrITrrrTrrrrTrTeT]  [(TTTTTTTTITrrrrTreer]  [TIrrirrrrprrrrrrrer ~FIN.7{0 .
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 ' ; gf'fg\cfiut
Pvalue a A

Form Points of significance: Comparing samples—part |l Nature Methods




P-value summary

* P-value histogram can tell you thereis
an effect overall

* Expectitto be uniform when thereisno

effect—even though individual test can a Distribution of unadjusted P values
return ve ry sm a” p_value Effect absent Effect present Both

10% effect chance

* 1,<1 can be used to argue that there is

a difference even when no single geneiis PERISRSSSCIS
significant
* Propose further testing such as aggregating e e
across genes—pathway analysis (discussed O te 1R s 188 0e %0

P value

later)



Beyond T-test: Significance analysis of microarrays (SAM)

* Significance analysis of microarrays
applied to the ionizing radiation

Difference between the

response Virginia Goss Tusher, means of the two conditions

Robert Tibshirani, and Gilbert Chu -
+ 2001 d(i) = (1) — Xy ()
* With small sample sizes low and high s(7) + 5,

variance can occur by chance

Fudge Factor

Estimate of the standard

* Variance depends on expression deviation of the numerator
level

* Choose S, so that variance is
independent of expression level



Assigning significance by permutation

We have calculated a new statistics and we don’'t have a
parametric description of the null distribution

Solution: generate an empirical null distribution form a set of
experiments where all hypotheses should be null

Generate permutations of data labels so no difference is
expected

For each permutation p, calculate dp(i).
Define FDR d (i) = X1 (£) = X6, (F)

Pick a threshold d, for calling genes significant S(Z) 5
— Calculatethe number of genes above the threshold X

— Calculate the number of expected falsely differentially expressed genes at that
threshold Y from the permuted sample analysis

- ComputeY/X
~ 46 real DE genes, 8.4 average across permutation—FDR=.18 (8.4/46)



More on permutations

* Very small experiment-random
permutations may create
unbalanced groups

* Solution:restrict to balanced
permutations-each permutation
should split the real groups equally

e Can be applied to up/down
regulated genes separately

* Permutation analysis can be
applied to any complicated
statistical procedure!

Balanced permutations
Number of red and cyan groups is equal




Why does SAM work

e Sample variance in not
an accurate assessment
of the true variance ]

* What would the per

gene variance be we had g ,pooled

an infinite number of

samples? "
* SAM is in example of f

moderated T statistic / / \
* Many current methods

use a more principled 51

Bayesian method

A )—CGI (Z) — )—C(;z (l)
4= s(i) + s,




Bayesian reasoning: short intro

* Synthesize prior
knowledge and
evidence

* Main theorem

e Simple derivation
P(A and B)=

P(A|B)P(B)=p(B|A)p(A)

P(AIB) =

P(BIA) P(A)
P(B) |



Classical example

* Duchenne Muscular Dystrophy (DMD) can be
rggarded as a simple recessive sex-linked
Ej)l(,;;ease caused by a mutated X chromosome H(Clhs.) = p(h.s.|C)p(C)

* An XY male expressesthe disease, whereas an XX
female is a carrier but does not express the

disease p(h.s.|C)p(C)

* Suppose neither of a woman’s parents : — e =
expresses the disease, but her brother does. p(h.s.|C)p(C) + p(hs.|C)p(C)

Then the woman’s mother must be a carrier,

p(h.s.)

and the woman herself therefore may be a (1/2) - (1/2) 1
carrier (1/2)-(1/2) +1-(1/2) _ 3
* P(C)=1/2

 What if she has a healthy son?



Bayesian approach to statistics

* Last example: incorporate evidence into strong prior belief

* Statistics
* Naive approach:is estimate the parameters from observation only

* Bayesian approach: have some prior expectation
* Prior expectation: Variance should not be too big or too small

* Bayesian statistical analyses:
* begin with ‘prior’ distributionsdescribing beliefs about the values of
parameters in statistical models prior to analysis of the data at hand

* require specification of these parameters
* ‘Empirical Bayes’ methods use the data at hand to guide prior parameter

specification
 Then given the data, these prior distributionsare updated to give posterior

results



A few more details

e Gene specific variance is
sampled from a distribution of
variance parameters st s3 o \;);U
* True variance is unknown 2 "
* Only sample variance is known

* Scaled inverse chi-squared
distribution

, Den§0ity

Sample estimate

Moderated estimate /

([5'}2 -1 1()5()) Distribution parameters

,
,S_. —

J LA
d dU Software: Limma
Baldi & Long 2001, Wright & Simon 2003, Smyth 2004



More complicated models

* So far we only consider 2 group
experiments

* Many other possibilities

* Factorial: two groups each has two
treatments--Are treatment effects
different across groups?

* Continuousvariables: dosage of a
drug
e Continuousdiscrete variables

e 2 groups,3drugdoses—dothedrugs
affect the groups differently?



General framework for differential expression

* Linear models

* Model the expression of
i y=Xp+e

each gene as a linear

function of explanatory T
variables / \

vector of design Vector of
* Groups observed matrix parametersto
* Treatments data estimate

 Combinationsof groups
and treatments

* Etc...



Example of a design matrix

Normal sample x 2 Cancer Sample x 2

)

/yl /1 O\
Y 1 0 [ﬁl] B, = normal log-expression
- ! b, 3, = cancer — wt
\94) 1 1
\ )

Ely,]=Ely,]=p Ely;]=Ely,]= p1+ P2



More examples
i y=Xp+e

Global Drug dose
mean

* 6 samples 3 ) e
e 2 groups + drug treatment 1 0 1
 Group and treatment effect 1 ‘1’ ;‘25
are additive : : ;
1 1 4

3 coefficients to estimate



More examples y=X03+¢

Drug dose

+ Group 2
* 6 samples : ) - :
e 2 groups + drug treatment 0 1 0
* Treatments affect groups 5 ) 4 0

: 1 1 0.25 0.25

differently ; : 1 ,
1 1 4 4

4 coefficients to estimate



Linear model parameter estimation

Model is specified —how
do we find the
coefficients

* Minimize squared error
* Take derivative
* Setto O

e Solve
* Significance of coefficientsis
tested with a T-test

y=XB+e

ce = (Y -XB) (Y -Xp)
& (Y = XB8)(Y — X9))
—2X'(Y - XB) =0

X'Y = (X'X)3

8 =(X'X)"X'Y

—2X'(Y — XB)



Linear models for data clean up

e Linear models are useful
for including nuisance
variables--Technical
factors

e Variables that have an
effect on measurements
but are not themselves of
Interest

e 2 group design
e Control vs MS

 Variable sample storage
time

Gene expression level

Gene expression level

©
—— > ——
‘ 3 :
¢ g , 3 -
2 s —
e E— — § 5
—_ 3 : B
o 0 ; B
e — Q e
[ I (O] I 1
CON MS CON MS
Group Group

sample storage time




Batch effects

Technical variables that effect gene
expression

Often occur when samples were
processed in “batches”

* Atdifferenttimes

* Differentlocations

* Differenttechnician

» Different protocol

Batch variables are often discrete
but can be continuous(such as:
storage time)

* With RNAseq we can model sample
specific GC bias

Batch effects can be corrected if
they don’t align with a variable of
interest

Experimental design is important!

Can Be Corrected
/-m\

e \
oflefBeeo il )

Can’'t Be Corrected

/—\\\
Batch1 ( O © @ ©® 0@
e

"w

(...oooo..) Batch 2\ ..'..'

L_.//

e e

)
/ 2

(“O...Q. B sacn:( ool B )
e s " =4

Biological Group 1:
Disease

\\—//
@ Biological Group 2:
Control



General approaches to multi dimensional data

* Many more measurements than samples
* Use measurement distributions for normalization and filtering
* Borrow information across measurements for hypothesis testing



Comparisons

* In general, for a given multiple testing procedure,

PCER < FWER < PFER,
and
FDR < FWER,

with FDR = FWER under the complete null



Cluster analyses:

1) Usually outside the normal framework of statistical inference;

2) less appropriate when only a few genes are likely to change.

3) Needs lots of experiments

Single gene tests:

1) may be too noisy in general to show much

2) may not reveal coordinated effects of positively correlated genes.
3) hard to relate to pathways.



Example

* 150 genes were difference with a T test p-value of < 0.05
* |s this a good result?



Can Be Corrected Can’t Be Corrected
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Batch 2

Batch 3

Biological Group 1: @ Biological Group 2:
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