Molecular Evolution
Molecular Evolution

• How and when were genes and proteins created? How “old” is a gene? How can we calculate the “age” of a gene?

• How did the gene evolve to the present form? What selective forces (if any) influence the evolution of a gene sequence and expression? Are these changes in sequence adaptive or neutral?

• How do species evolve? How can evolution of a gene tell us about the evolutionary relationship of species?
Understanding relationship between homologous sequences

• Complete evolutionary history is depicted as phylogenetic tree
• Tree topology—correctly identify the common ancestors of homologs sequences
• Tree distance—identify the correct relationship in time
• Example: MSA
 • Topology—which sequences should be aligned first
 • Distance—how to weight the sequences when computing alignment score
Measuring evolutionary distance

• How long ago (relatively) did two homologous sequences diverge from a common ancestor

• Simple method: % divergence – 100 - % identity
 • Count up the number of places two sequences differ

• Used by blast: % identity, % similarity

• Easy to compute

• But the major problem is that it underestimates divergence after only a moderate amount of change.

• % divergence saturated with time
 • PAM250 represent 80% divergence
Types of nucleotide substitutions

(a) Single substitution
1 change, 1 difference

(b) Multiple substitution
2 changes, 1 difference

(c) Coincidental substitution
2 changes, 1 difference

(d) Parallel substitution
2 changes, no difference

(e) Convergent substitution
3 changes, no difference

(f) Back substitution
2 changes, no difference

Fig. 5.9 Six kinds of nucleotide substitution. In each case the ancestral nucleotide was A. In all except the case of a single substitution, the number of substitutions that actually occurred is greater than would be counted if we just compared the two descendant sequences. In the lower three cases the nucleotides are identical in both descendant sequences, but this similarity has not been directly inherited from the ancestral sequence. Such similarity is termed 'homoplastic'.
Nucleotide Substitutions Models

• To make functional inferences we typically don’t model insertions and deletions, large or small, because of the difficulty in assigning homology.

• We model nucleotide substitutions under the assumptions:
 • They occur as single, independent events
 • They don’t affect substitutions at other sites
 • Time scale is much larger than time to fixation in a population

• Effective models incorporate the probability of substitutions, and hence account for different kinds of substitutions (multiple, parallel, convergent, reversion)

• Model sequence evolution as a markov process
 • A->A->T->C->A
Number of substitutions

• Central question: given two aligned sequences what is the number of substitutions that actually occurred
• Assuming constant substitution rate λ the expected number of substitutions per size is $2\lambda t$
• t is unknown
• Known—observed divergence
Jukes-Cantor Model (JC69)

• 1969

• Evolution is described by a single parameter, alpha (\(\alpha \)) , the rate of substitution.

• Assumptions:
 • Substitutions among 4 nucleotide types occur with equal probability (rate matrix below)
 • Nucleotides have equal frequency at equilibrium

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1-3(\alpha)</td>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>T</td>
<td>(\alpha)</td>
<td>1-3(\alpha)</td>
<td>(\alpha)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>C</td>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>1-3(\alpha)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>G</td>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>1-3(\alpha)</td>
</tr>
</tbody>
</table>
Jukes-Cantor Model

What is probability of having nucleotide A \((P_{A(t)}) \) at time \(t \) if we start with A?

- Derive expression \(P_A \) using discrete time periods in which the rate is represented as \(\alpha \).
 - \(P_{A(0)} = 1, P_{C(0)} = 0, \ldots \)
 - \(P_{A(1)} = 1 - 3\alpha, P_{C(1)} = \alpha, \ldots \)
 - \(P_{A(2)} = (1 - 3\alpha)P_{A(1)} + \alpha(1 - P_{A(1)}) \)
 - at time 1 there was an A, and that A had not changed
 - at time 1 there was not an A and it changed to an A

Jukes-Cantor Model
Jukes-Cantor Model

• Recurrence equation:
 • \(P_{A(2)} = (1 - 3\alpha)P_{A(1)} + \alpha(1 - P_{A(1)}) \)
 • \(P_{A(t+1)} = (1 - 3\alpha)P_{A(t)} + \alpha[1 - P_{A(t)}] = (1 - 4\alpha)P_{A(t)} + \alpha \)

• What is the change in \(P_A \) over time (\(\Delta P_A \))?

• \(\Delta P_{A(t)} = P_{A(t+1)} - P_{A(t)} \)

• Subtract \(P_{A(t)} \) from both sides we get

• \(\Delta P_{A(t)} = -4\alpha P_{A(t)} + \alpha \)

• \(\Delta P_{A(t)} \) is proportional to \(P_{A(t)} \)
Jukes-Cantor Model

• What is the change in P_A over continuous time?
 • $dP_A(t)/dt = -4\alpha P_A(t) + \alpha$

• Solve the differential equation
 • $P_A(t) = \frac{1}{4} + (P_A(0) - \frac{1}{4})e^{-4\alpha t}$

• $P_A(t) = \frac{1}{4} + \frac{3}{4} e^{-4\alpha t}$ starting at A at t=0

• $P_A(t) = \frac{1}{4} - \frac{1}{4} e^{-4\alpha t}$ starting at T,C, or G at t=0

• We can generalize to these equations because all nucleotides are equivalent:
 • $P_{ii}(t) = \frac{1}{4} + \frac{3}{4} e^{-4\alpha t}$
 • $P_{ij}(t) = \frac{1}{4} - \frac{1}{4} e^{-4\alpha t}$
Jukes-Cantor Model

Which equilibrium frequency of i is reached at large t?

(e.g. $i = A$)

$P_{AA(t)} = \frac{1}{4} + \frac{3}{4} e^{-4\alpha t}$

$P_{jA(t)} = \frac{1}{4} - \frac{1}{4} e^{-4\alpha t}$

We can think of P_i as the frequency of i in a long sequence.
Applying the Jukes-Cantor Model to estimate distance

- Given two sequences evolving independently for a time t what is the probability they both have an A

\[P_I(t) = P_{AA}(t) + P_{AC}(t) + P_{AT}(t) + P_{AG}(t) \]

both remain A, both change to C, T, or G

- \[P_I(t) = P_{ii}(t) + 3(P_{ij}(t)) \]

- \[P_I(t) = \left(\frac{3}{4} + \frac{1}{4} e^{-4\alpha t}\right)^2 + 3\left(\frac{3}{4} - \frac{1}{4} e^{-4\alpha t}\right)^2 \]

\[= P_I(t) = \frac{3}{4} + \frac{3}{4} e^{-8\alpha t} \]

\[\begin{array}{|c|c|c|c|c|c|}
\hline
\text{time} & 0 & 20 & 40 & 60 & 80 & 100 \\
\hline
P_I(t) & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\hline
\end{array} \]
Estimated number of substitutions

- Our goal original goal was to estimate the total number of substitutions since divergence from a common ancestor
- \(E[\text{sub}] = 2\lambda t = 6\alpha t; \lambda = 3\alpha \)
- Estimate \(\alpha t \) from \(P_{I(t)} = \frac{1}{4} + \frac{3}{4} e^{-8\alpha t} \) and \(P_D = 1 - P_{I(t)} \)
 - \(\alpha t = -\frac{1}{8}\ln(1 - (4/3)P_D) \)
- \(E[\text{sub}] = \frac{3}{4}\ln(1 - (4/3)P_D) \) -- Also known as \(K_{JC} \)
Example

• $K_{JC} = \text{function}(p) \{ -0.75 \times \log(1 - 4p/3) \}$

• # divergent bases = total bases – identical bases
 • $34 - 25 = 9$

• $9/34 = 0.264705 \leftarrow \text{uncorrected \% divergence}$

• $K_{JC}(9/34) = 0.326488 \leftarrow \text{corrected distance } K_{JC}$
Rate variation between bases

In reality, bases are not equivalent, and rates of change between them are not equal.

Transitions usually outnumber transversions.
Kimura’s 2-parameter model (K2P)

- Models transition and transversion rates separately
- Two parameters
 - α for transition rate and β for transversion rate.
- Assumption:
 - Nucleotides have equal frequency at equilibrium

$$f = [0.25, 0.25, 0.25, 0.25]$$
Kimura model

• Begin with A: $P_{AA(0)} = 1$

• What is $P_{AA(1)}$?

$P_{AA(1)} = 1 - \alpha - 2\beta$

$P_{AA(2)} = (1 - \alpha - 2\beta)P_{AA(1)} + \beta P_{AT(1)} + \beta P_{AC(1)} + \alpha P_{AG(1)}$

• Recursion: $P_{AA(t+1)} = (1 - \alpha - 2\beta)P_{AA(t)} + \beta P_{AT(t)} + \beta P_{AC(t)} + \alpha P_{AG(t)}$
Calculating divergence

P and Q are proportions of divergence due to transitions (P) and transversions (Q) between the 2 sequences

\[K_{K2P} = -\frac{1}{2} \ln(1 - 2P - Q) - \frac{1}{4} \ln(1 - 2Q) \]

\[k2p = function(p,q) \]

\[\{ -0.5*\log(1-2*p-q) - 0.25*\log(1-2*q) \} \]

Two 100bp sequences have 20 transitions and 4 transversions between them.

\[k2p(0.2,0.04) = 0.3107 \] changes per base pair

31 changes over the entire sequence

The sequences came from a snapdragon (Antirrhinum) and a monkey flower (Mimulus) whose lineages diverged 76 Mya, yielding a divergence rate of 0.408 substitutions per million years
Kimura K2P model

Estimate the ts/tv ratio

\[ts/tv = \frac{\alpha}{\beta} = 2* \frac{\ln(1 - 2p - q)}{\ln(1 - 2q)} - 1 \]

Mammals

Nuclear DNA ts/tv ≈ 2
Mitochondrial ts/tv ≈ 15
Nucleotide substitution models

- **Jukes-Cantor (JC)**
 - Equal base frequencies: $\pi_A = \pi_C = \pi_G = \pi_T$
 - All substitutions equally likely
 - Allow for transition/ transversion bias

- **K3P (K2P)**
 - Equal base frequencies: $\pi_A = \pi_C = \pi_G = \pi_T$
 - Transversions and transitions have different substitution rates
 - $\alpha = \beta$

- **Felsenstein (F81)**
 - Unequal base frequencies: $\pi_A \neq \pi_C \neq \pi_G \neq \pi_T$
 - All substitutions equally likely
 - Allow for transition/ transversion bias

- **Hasegawa et al. (HKY85)**
 - Unequal base frequencies: $\pi_A = \pi_C = \pi_G = \pi_T$
 - Transversions and transitions have different substitution rates
 - $\alpha \neq \beta$

- **General reversible (GTR)**
 - Unequal base frequencies: $\pi_A \neq \pi_C \neq \pi_G \neq \pi_T$
 - All six pairs of substitutions have different rates
Different substitution models

Fig. 5.15 Observed and expected numbers of nucleotide pairs between human and chimpanzee mtDNA sequences for three different models. As the models add parameters they more closely approximate the observed pattern. Data from Takura (1994).
Models have assumptions

• All nucleotide sites have same rate
• The substitution matrix does not change
• Sites change independently.
 • There is no co-evolution or multiple mutation
• This is all true:
 • Sequence changes only due to replication error
 • Errors are randomly propagated – neither advantageous nor deleterious
GC content varies over evolutionary time

- GC content is heterogeneous across the genome at a scale of hundreds of nucleotides
- GC biased gene conversion
- **Gene conversion** is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the
- Diploid organism: 2 copies of every locus
Evolutionary rates vary according to gene region

Drosophila

Patterns of intron sequence evolution in *Drosophila* are dependent upon length and GC content
Penelope R. Haddrill*, Brian Charlesworth*, Daniel L. Halligan* and Peter Andolfatto*

Human - Chimp

Selection on Human Genes as Revealed by Comparisons to Chimpanzee cDNA
Ines Hellmann, Sebastian Zöllner, Wolfgang Enard, et al.
Genome Res. 2003 13: 831-837
Access the most recent version at doi:10.1101/gr.944903
Molecular clock hypothesis

• JC and Kimura models assume nucleotides accrue substitutions at a constant rate
• Empirical evidence
• Useful concept for dating divergence times
• Deviation indicate slowing or acceleration of evolutionary change
• ...or incorrect fossil dating
Molecular clock hypothesis

• Forces effecting sequence change
 • **Mutation**: sequence change in a single individual
 • **Fixation**: there exists at least two sequence variants (alleles) in a population and overtime only one remains
 • **Drift**: change in variant frequency due to resampling
 • **Selection**
 • Negative Selective removal of deleterious mutations (alleles)
 • Positive Increase the frequency of beneficial mutations (alleles) that increase fitness (success in reproduction)

• Main innovation: most changes we observe across lineages are neutral
Molecular clock hypothesis

- Rates vary widely for different proteins but scale with time
- Local clock vs global clock
- Rates can vary over branches and over time
 - Selection
 - Generation time effect
 - Efficiency of DNA repair
 - Some evidence suggests that DNA repair is more efficient in humans than in mice
Protein-coding sequences present opportunities to study differential rates

• A **nonsynonymous** substitution is a nucleotide **mutation** that alters the amino acid sequence of a protein.

• **Synonymous** substitutions do not alter amino acid sequences.

• **Synonymous** (silent) changes are thought to have relatively small effects, if any, on gene and protein function

• **Synonymous** sites typically diverge at rates similar to non-functional sequences, such as pseudogenes, they are often the best molecular clock to normalize rates of substitution.
Synonymous and nonsynonymous substitution rates K_S and K_A

Early methods estimated K_S and K_A using simple counting methods. These were sufficient as long as divergence was low (< 1 change per codon).

Step 1: count # syn and nonsyn changes (M_S & M_A)

Step 2: normalize each by number of syn and nonsyn sites (N_S & N_A)
 - for each nucleotide, sum proportion of potential changes that are syn or nonsyn
 - determine mean # syn and nonsyn sites between sequences

Step 3: use nucleotide model to compute genetic distances K_S and K_A

$$K_S = -\frac{3}{4} \ln(1 - (4/3) \frac{M_S}{N_S})$$
$$K_A = -\frac{3}{4} \ln(1 - (4/3) \frac{M_A}{N_A})$$

More sophisticated models can be used to account for ts/tv rates.
Interpreting K_S and K_A

These quantities can be powerful for making inferences about protein function.

- While amino acid divergence rates between proteins vary 1,000 fold, it is not clear whether rapidly evolving regions resulted from a lack of functional constraint or from positive selection for novel function.
- We can distinguish between these two scenarios by normalizing K_A with K_S
Statistical Tests

- $K_A - K_S$ use t-test to assess significance
 - $t = (K_A - K_S) / \sqrt{V(K_A) + V(K_S)}$, V is variance
 - Cannot be used for small numbers of substitutions $M < 10$
- 2 x 2 Contingency table and Fisher’s exact test
 - Because M_A and M_S are not corrected genetic distances
 - this is only accurate for small numbers of substitutions $\sim K < 0.2$
- K_A / K_S (a.k.a. d_N/d_S) It is convenient to compare them as a ratio, in which the nonsyn rate is normalized by the syn rate. These values are comparable across genes and species.

<table>
<thead>
<tr>
<th></th>
<th>nonsyn</th>
<th>syn</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed</td>
<td>M_A</td>
<td>M_S</td>
</tr>
<tr>
<td>not changed</td>
<td>N_A-M_A</td>
<td>N_S-M_S</td>
</tr>
</tbody>
</table>
dN/dS in practice

- Only useful for comparing close sequences
- Mammalian genes – YES!
- Yeast family genes – NO
- Synonymous sites are at saturation!
Only rarely do d_N/d_S ratios calculated over the entire gene exceed 1. Usually only select protein regions experience recurrent positively selected changes, so that moderately elevated values may indicate the presence of positive selection.
Immune proteins are targets of positive selection
Example MHC

- MHC molecules bind intercellular peptides and present them to immune cells
- Important for recognizing virus infected cells
- Overall d_N/d_S ratio <1

Amino acids in spacefill have a d_N/d_S ratio > 1.
Reproductive proteins are often under positive selection

Figure 1. Plots of \(d_N\) Versus \(d_S\) for Primate and Drosophila Seminal Fluid Genes

(A) Genes encoding seminal fluid proteins identified by mass spectrometry in human versus chimpanzee.

(B) *Drosophila simulans* male-specific accessory gland genes versus *D. melanogaster* [2].

The diagonal represents neutral evolution, a \(d_N/d_S\) ratio of one. Most genes are subject to purifying selection and fall below the diagonal, while several genes fall above or near the line suggesting positive selection. Comparison of the two plots shows elevated \(d_N/d_S\) ratios in seminal fluid genes of both taxonomic groups.

DOI: 10.1371/journal.pgen.0010035.g001
Particular protein functional classes demonstrate frequent signs of positive selection

From Human-Macaque gene comparisons

S6.7: PANTHER Categories Showing an Excess of Positive Selection

<table>
<thead>
<tr>
<th>Description</th>
<th>N^a</th>
<th>$P_A,^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense/immunity protein</td>
<td>141</td>
<td>1.99e-16</td>
</tr>
<tr>
<td>Immunoglobulin receptor family member</td>
<td>44</td>
<td>2.33e-11</td>
</tr>
<tr>
<td>Immunity and defense</td>
<td>608</td>
<td>2.59e-06</td>
</tr>
<tr>
<td>Natural killer cell mediated immunity</td>
<td>28</td>
<td>3.20e-06</td>
</tr>
<tr>
<td>Fertilization</td>
<td>16</td>
<td>2.64e-05</td>
</tr>
<tr>
<td>KRAB box transcription factor</td>
<td>263</td>
<td>3.83e-05</td>
</tr>
<tr>
<td>Intermediate filament</td>
<td>41</td>
<td>6.01e-05</td>
</tr>
<tr>
<td>Other receptor</td>
<td>95</td>
<td>1.70e-04</td>
</tr>
<tr>
<td>Structural protein</td>
<td>88</td>
<td>2.66e-04</td>
</tr>
<tr>
<td>Complement-mediated immunity</td>
<td>27</td>
<td>4.80e-04</td>
</tr>
<tr>
<td>Complement component</td>
<td>23</td>
<td>9.65e-04</td>
</tr>
<tr>
<td>Blood clotting</td>
<td>35</td>
<td>3.18e-03</td>
</tr>
</tbody>
</table>
Example: lysozymes

Lysozyme is a bacteriolytic enzyme normally acting in host defense. It has been coopted to the foregut in vertebrate species that digest plant material—namely ruminants (e.g. cow), colobine monkeys (e.g. langur), and the hoatzin, a bird.

Lysozymes in these species have independently converged to the same amino acid at specific sites to the effect of increasing tolerance to the low pH of the digestive tract.

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>Hoatzin Stomach</th>
<th>Mammalian Stomach</th>
<th>Chicken Egg-White</th>
<th>Pigeon Egg-White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pH optimum</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Isoelectric point</td>
<td>~6</td>
<td>6.2–7.7*</td>
<td>11.2</td>
<td>~10.6</td>
</tr>
<tr>
<td>Total arginines</td>
<td>5</td>
<td>3–6</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Arginine-to-lysine ratio</td>
<td>0.63</td>
<td>0.27–0.67</td>
<td>1.83</td>
<td>0.77</td>
</tr>
<tr>
<td>Adaptive residues:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/K14</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E/K21</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D75</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N87</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>E/K126</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* The isoelectric point for langur lysozyme is somewhat higher (Stewart et al. 1987; Stewart and Wilson 1987).