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Protein Interactions




Assigning Function to Proteins

e While ~25000 genes have been identifiedin the human
genome, for most, we still do not know exactly what they do

e Determiningthefunction of the proteincan be donein
several ways.

— Sequence similarity to other (known) proteins
— Usingdomain information
— Usingthree dimensional structure

— Based on high throughput experiments (when does it functions and
who it interacts with)



Protein Interaction

* In orderto fulfill their function, proteinsinteract with other
proteinsin a number of ways including:

e Pathways, forexampleA->B->C
e Posttranslational modifications
e E.g., protein phosphorylation to regulate enzymes

e Formingproteincomplexes



Protein interaction

Traditionally proteininteractionswere studied in small scale
experiments

Many new proteinsfrom complete genome sequences

New methods for genome wide interaction data



PPl Lab Experiments

PPl experiments
One proteinorseveral proteins atatime
Small amount of available data
Expensive andslow lab process

PPl experiments
Hundreds /thousands of proteins at a time
Highly noisyand incomplete data
Surprisingly little overlap among different sets



Methods

Yeast two-hybrid screens )

Protein complexpurificationtechniquesusingmass \_ pioct
spectrometry

_

Correlated messenger RNA expression profiles  —
Geneticinteractiondata
'in silico' interactions

~ Indirect

Analysis of PPl networks
— Classification
— Network alignment



Yeast two-hybrid assay

* Yeast transcription factor has a bindingdomain (BD) and
activation domain (AD)
— BD bindsto upstream of the target gene on DNA
— ADis requiredto activatetranscription

— BDand AD function independently
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Yeast two-hybrid assay

Bait (X) and prey (Y): two proteins
to be tested forinteraction No interaction between

— Baitis attached to the BD A two proteins
— Preyis attached tothe AD

If bait and preyinteract,
— a proper transcription factor is

formed reporter gene
— the reporter gene is transcribed no transcription
If bait and prey does not interact, B Interaction between two
— a proper transcription factor is not proteins
formed

— thereporteris not transcribed
RNA Polymerase I

reporter gene

transcription



Mass spectrometry (MS) of purified complexes

e Affinity purification and mass spectrometry

— Multiprotein complexesareisolated directly from cell lysates through
one or more affinity purification steps

— Complex components are then identified by MS

* Unlike two-hybrid assay,

— MS can can be performed under near physiological conditionsin the
relevant organism and cell type

— MS does not perturb post translational modification, thus the effects
of post translational modification can be detected



Mass spectrometry (MS) of purified
complexes
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Identifying PPl from Mass Spectrometry
Data

MS data alone only provide the protein composition notthe
protein-proteininteraction

Limitation: what happenswhen one bait protein participates
in multiple complexes?
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Geneticinteractions (synthetic lethality).

Two nonessential genes that cause lethality when mutated at
the same time form a syntheticlethalinteraction.

Such genes are often functionally associated and their
encoded proteins may also interact physically.



In silico predictions through genome
analysis.

* Whole genomescan be screened for three types of
interaction evidence:

— In prokaryoticgenomes, interacting proteins are often encoded by
conserved operons

— Interacting proteinshave a tendency to be either present or absent
together from fully sequenced genomes, thatis, to have a similar
'ohylogenetic profile’;

— Proteinsare sometimesfound fused into one polypeptide chain. This
is anindicationfora physical interaction.




Distribution of interacting proteins (e.g., TAP complexes)
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Benchmarking

 Comparingthe data with a reference set of trusted

interactionsallows the estimation of lower limits for accuracy
and coverage.

 The highest accuracy is achieved for interactionssupported by
more than one method



Biases in coverage

 Most proteininteraction data (includingthe curetted
complexes) are biased towards proteinsof high abundance.

 Thetwo “genetic” approaches (two-hybrid and synthetic
lethality) appear relatively unbiased.

* Data sets are biased towards particular cellularlocalizations.
For example mitochondrial proteinsin the case of the in silico
predictions. (such protein are of bacterial descent)



Methods

Yeast two-hybrid screens )

Protein complexpurificationtechniquesusingmass \_ pioct
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Protein interaction as a
classification problem

* Giventhese direct and indirect datasets, we can design a
classifier which will take as an input high throughput data for
a pair of proteins



Challenges

Features are heterogenuous

Most features are noisy

Most features have missing values
Highly skewed class distribution

* Much more non-interacting pairs thaninteracting pairs
* No negative (notinteracting) set available

Only a small positive (interacting) set available

Species Database (Small-scale PPI) Genome | Predicted # of Estimated Ave.
Size Interactions Num. Partners
Per Protein
Yeast DIP (3867 interactions ; 1773 ~6300 ~30,000 ~10
proteins)
Human HPRD (14608 interactions; 5712 ~25,000 ~90,000 ~6
proteins)




PPl Network Alignment

 Comparative analysis of PPl networks across different species

by aligningthe PPl networks
— Find functional orthologs of proteinsin PPl network of different
species
— Discover conserved subnetwork motifsin the PPl network

* Globalvs. local alignment
— Most of the previous work was focused on local alignment

— Global alignment can better capturethe global picture of how
conserved subnetwork motifs are organized—but thisis more

challenging



PPl Network Alignment

* Challenges

— How can we align multiple PPI networks?: pair-wise alignmentisan
easier problem

— How can we use both sequence conservationinformationand local
networktopology duringthe alignment?

* Conserved subnetworks across species have proteins with
conserved sequences as well as conserved interactions with other
proteins

* Most of the previous work was focused on finding orthologs based
on the sequence similarities



IsoRank and IsoRank-Nibble

Multiple PPl network alignment for multiple species
Global alignment

Alignmentbased on both sequence and local connectivity
conservations

Based on Google PageRank



PageRank Overview

Developed by Larry Page and used in Google search engine

Pages with higher PageRank are returned as search hits

Algorithmfor ranking hyperlinked webpagesin the network of
webpages

— Nodeiseach webpage

— Directed edge from a linking page to the hyperlinked page



PageRank lllustration




PageRank Overview

PageRank models the user behavior

PageRank for each page is the probability thata websurfer
who starts at a random page and takes a randomwalk on this
network of webpages end up at that page

— With probability d (damping factor), the websurferjumpsto a
different randomly selected webpage and starts a random walk

— Withoutthe dampingfactor, only the webpages with no outgoing
edges will get non-zero PageRanks




PageRank

 The webpages with a greater number of pages linked to it are
ranked higher

* If a webpage has multiple hyperlinks, the vote of each
outgoingedge is divided by the number of hyperlinks

 Thevote of each hyperlinkdependson the PageRank of the
linking webpage

— Recursive definition of PageRanks




PageRank

* PageRank p; of pageiis given as

N

pi = (1 —d) +dZ(Lij )p;

C.
j=1

— d: damping factor, it ensures each page gets at least (1-d) PageRank
— N:the number of webpages
— L;=1if page j points to page i, and O otherwise

— N
€ = 2z L



PageRank

* Using matrix notation

p=(1—de+d-LD.'p

p: thevector oflength N

e: thevectorof N ones

D. = diag(c): diagonalelementsarec;
L: NxN matrix of L’s

* Introduce normalization (7, — n so that average PageRank
Is1

(1 —d)ee’ /N +dLD_|p
Ap

p



PageRank

* p/Nisthe stationarydistribution of a Markov chain overthe N
webpages

* Inorderto find p, we use power method
— Initialize p = po
— lteratetofind fixed pointp

Pk — Apik—1; pPr— N



IsoRank

e Stage 1: Given two networks G; and G,, computethe

similarity scores R;; for a pair of proteinfornodeiin vertex set
V,in G; and proteinfornodej in vertexset V, in G,
— Use PageRank algorithm

* Stage 2: Given the matrix R of R;;, find the global alignment
using a greedy algorithm



From PageRank to IsoRank

PageRank ranks webpages, whereas IsoRank ranks the pairs of
proteinsfrom the two networks to be aligned.

PageRank uses the hyperlink informationfrom neighboring
nodes to recursively compute the ranks, whereas IsoRank
uses the sequence similarity and network connectivity with
other neighboringnodes to definethe ranks.



IsoRank

* Similarly to PageRank, pairwise similarity score R;; is
recursively defined as

1
L.o= . . y ] o . V’).
Rl] E E ‘IV(LI)HJ\"'(}--’) Rm S Vl./ S 2:
uEN(i) veN(j)
— N(i) : the set of neighbors of node u within the graph of u

* Using matrix notation

R = AR, where
1
Ali, jllu, vl =1{ |N)||N©W)|
0 otherwise

if (i,u) €Ey, (j,v) €EE,

 Aisalargebutsparse matrix



IsoRank Example
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IsoRank Example

I a' b' c' d' e'
a |0.0312 0.0937
b 0.1250 0.0625 | 0.0625
c |0.0937 0.2812
d 0.0625 0.0312 | 0.0312
€ 0.0625 0.0312 | 0.0312




IsoRank

* When the network edges are weighted

w(i, uyw(j, v)
Ry = z 2 E Ruy

ueN(i) vENIj) reEN(u) W(’ B l{) Zf] EN(v) W(.(] ’ 1)

i€V,jEV,

* Power method can be used to computeR;’s



IsoRank

* Incorporatingsequencesimilarity informationE

R = aAR + (1 — a)E, O=a=1,o0r
R = (a4 + (1 — a)E1DR.
— a =0: onlysequence similarity informationis used but no network

information is used.
— a =1: onlynetworkinformationis used



IsoRank: Stage 2

e Extractingnode-mappinginformation forglobal alignment
given pairwise similarity scores R;
— One-to-one mapping

* Anynodeismappedtoat mostonenodeinthenetworkfrom
other species

* Efficient computation
* Ignores gene duplication
— Many-to-many mapping
* Finds clusters of orthologous genes across networks from different
species

— Mappingcriterion:identify pairs of nodes thathave high R;;scores,
while ensuringthe mapping obeystransitive closures —if the mapping
contains(a,b)and (b,c), it should contain(a,c)



IsoRank: Stage 2

* One-to-one mapping
— Greedyapproach
— Select the highest scoring pair



IsoRank: Stage 2

* Many-to-many mapping
— Greedyapproach
— Forma k-partite graph with kgraphs
— lterate until k-partite graph has no edges
* Findingseed pair:

— select the edge (i,j) with the highest score R;; (i,j are from two
different graphs G; and G,)

 Extendtheseed:

— In(Gg, ..., Gy), find anode /, such that 1) Rj;and Rj; are the highest
scores between [ and any node in G; and G, and 2) R;and R;; exceed
a certain threshold

 Remove from k-partite graph the match set



Results

* AlignmentPPI networksfrom five species
— S. cerevisiae, D. Melanogaster, C. elegans, M. musculus, H. sapiens
— Thecommon subgraph supported by the global alignment contains
* 1,663 edges supported by at least two PPl networks
* 157 edges supported by at least three networks
— Thealignment by sequence-only (no network) method contains
* 509 edges with supportintwo or more species
* 40 edges supported by at least three networks



Results

* Subgraphsselected from yeast-fly PPl network alignment
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What you should know

e Differenttechniquesfordetecting protein—protein
interactions

e Computational methodsforanalysis of protein-protein
interaction data

e (Classification

e Networkalignment



