Protein Protein Interactions

02-710 Computational Genomics
Protein Interactions
Assigning Function to Proteins

• While ~25000 genes have been identified in the human genome, for most, we still do not know exactly what they do

• Determining the function of the protein can be done in several ways.
 – Sequence similarity to other (known) proteins
 – Using domain information
 – Using three dimensional structure
 – Based on high throughput experiments (when does it functions and who it interacts with)
Protein Interaction

• In order to fulfill their function, proteins interact with other proteins in a number of ways including:
 • Pathways, for example A -> B -> C
 • Post translational modifications
 • E.g., protein phosphorylation to regulate enzymes
 • Forming protein complexes
Protein interaction

- Traditionally protein interactions were studied in small scale experiments
- Many new proteins from complete genome sequences
- New methods for genome wide interaction data
PPI Lab Experiments

• **Small-scale** PPI experiments
 • One protein or several proteins at a time
 • Small amount of available data
 • Expensive and slow lab process

• **High-throughput** PPI experiments
 • Hundreds / thousands of proteins at a time
 • Highly noisy and incomplete data
 • Surprisingly little overlap among different sets
Methods

- Yeast two-hybrid screens
- Protein complex purification techniques using mass spectrometry
- Correlated messenger RNA expression profiles
- Genetic interaction data
- 'in silico' interactions
- Analysis of PPI networks
 - Classification
 - Network alignment

Direct

Indirect
Yeast two-hybrid assay

- Yeast transcription factor has a binding domain (BD) and activation domain (AD)
 - BD binds to upstream of the target gene on DNA
 - AD is required to activate transcription
 - BD and AD function independently
Yeast two-hybrid assay

• Bait (X) and prey (Y): two proteins to be tested for interaction
 – Bait is attached to the BD
 – Prey is attached to the AD

• If bait and prey interact,
 – a proper transcription factor is formed
 – the reporter gene is transcribed

• If bait and prey does not interact,
 – a proper transcription factor is not formed
 – the reporter is not transcribed
Mass spectrometry (MS) of purified complexes

- Affinity purification and mass spectrometry
 - Multiprotein complexes are isolated directly from cell lysates through one or more affinity purification steps
 - Complex components are then identified by MS

- Unlike two-hybrid assay,
 - MS can be performed under near physiological conditions in the relevant organism and cell type
 - MS does not perturb post translational modification, thus the effects of post translational modification can be detected
Mass spectrometry (MS) of purified complexes

Digest with enzymes

Fingerprints (m/z: mass/ion) from mass spectrometer

Mass spectrometry: Fast, high-throughput methods for protein sequencing
Identifying PPI from Mass Spectrometry Data

• MS data alone only provide the protein composition not the protein-protein interaction

• Limitation: what happens when one bait protein participates in multiple complexes?
mRNA Expression
Genetic interactions (synthetic lethality).

- Two nonessential genes that cause lethality when mutated at the same time form a synthetic **lethal interaction**.
- Such genes are often functionally associated and their encoded proteins may also interact physically.
In silico predictions through genome analysis.

- Whole genomes can be screened for three types of interaction evidence:
 - In prokaryotic genomes, interacting proteins are often encoded by conserved operons.
 - Interacting proteins have a tendency to be either present or absent together from fully sequenced genomes, that is, to have a similar 'phylogenetic profile';
 - Proteins are sometimes found fused into one polypeptide chain. This is an indication for a physical interaction.
Distribution of interacting proteins (e.g., TAP complexes)

- energy production
- aminoacid metabolism
- other metabolism
- translation
- transcription
- transcriptional control
- protein fate
- cellular organization
- transport and sensing
- stress and defense
- genome maintenance
- cellular fate/organization
- uncharacterized

Interaction density

(actual interactions per 1000 possible pairs)
Benchmarking

• Comparing the data with a reference set of trusted interactions allows the estimation of lower limits for accuracy and coverage.
• The highest accuracy is achieved for interactions supported by more than one method.
Biases in coverage

• Most protein interaction data (including the curetted complexes) are biased towards proteins of high abundance.

• The two “genetic” approaches (two-hybrid and synthetic lethality) appear relatively unbiased.

• Data sets are biased towards particular cellular localizations. For example mitochondrial proteins in the case of the *in silico* predictions. (such protein are of bacterial descent)
Methods

- Yeast two-hybrid screens
- Protein complex purification techniques using mass spectrometry
- Correlated messenger RNA expression profiles
- Genetic interaction data
- 'in silico' interactions

• Analysis of PPI networks
 – Classification
 – Network alignment
Protein interaction as a classification problem

• Given these direct and indirect datasets, we can design a classifier which will take as an input high throughput data for a pair of proteins
Challenges

- Features are heterogenous
- Most features are noisy
- Most features have missing values
- Highly skewed class distribution
 - Much more non-interacting pairs than interacting pairs
 - No negative (not interacting) set available
- Only a small positive (interacting) set available

<table>
<thead>
<tr>
<th>Species</th>
<th>Database (Small-scale PPI)</th>
<th>Genome Size</th>
<th>Predicted # of Interactions</th>
<th>Estimated Ave. Num. Partners Per Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td>DIP (3867 interactions ; 1773 proteins)</td>
<td>~6300</td>
<td>~30,000</td>
<td>~10</td>
</tr>
<tr>
<td>Human</td>
<td>HPRD (14608 interactions; 5712 proteins)</td>
<td>~25,000</td>
<td>~90,000</td>
<td>~6</td>
</tr>
</tbody>
</table>
PPI Network Alignment

- Comparative analysis of PPI networks across different species by aligning the PPI networks
 - Find functional orthologs of proteins in PPI network of different species
 - Discover conserved subnetwork motifs in the PPI network

- Global vs. local alignment
 - Most of the previous work was focused on local alignment
 - Global alignment can better capture the global picture of how conserved subnetwork motifs are organized – but this is more challenging
PPI Network Alignment

• Challenges
 – How can we align *multiple* PPI networks?: pair-wise alignment is an easier problem
 – How can we use both sequence conservation information and local network topology during the alignment?
 • Conserved subnetworks across species have proteins with conserved sequences as well as conserved interactions with other proteins
 • Most of the previous work was focused on finding orthologs based on the sequence similarities
IsoRank and IsoRank-Nibble

• Multiple PPI network alignment for multiple species

• Global alignment

• Alignment based on both sequence and local connectivity conservations

• Based on Google PageRank
PageRank Overview

• Developed by Larry Page and used in Google search engine

• Pages with higher PageRank are returned as search hits

• Algorithm for ranking hyperlinked webpages in the network of webpages
 – Node is each webpage
 – Directed edge from a linking page to the hyperlinked page
PageRank Overview

• PageRank models the user behavior

• PageRank for each page is the probability that a websurfer who starts at a random page and takes a random walk on this network of webpages end up at that page
 – With probability d (damping factor), the websurfer jumps to a different randomly selected webpage and starts a random walk
 – Without the damping factor, only the webpages with no outgoing edges will get non-zero PageRanks
PageRank

- The webpages with a greater number of pages linked to it are ranked higher

- If a webpage has multiple hyperlinks, the vote of each outgoing edge is divided by the number of hyperlinks

- The vote of each hyperlink depends on the PageRank of the linking webpage
 - Recursive definition of PageRanks
PageRank

- PageRank p_i of page i is given as

$$p_i = (1 - d) + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{c_j} \right) p_j$$

- d: damping factor, it ensures each page gets at least $(1-d)$ PageRank
- N: the number of webpages
- $L_{ij}=1$ if page j points to page i, and 0 otherwise
- $c_j = \sum_{i=1}^{N} L_{ij}$
PageRank

- Using matrix notation
 \[p = (1 - d)e + d \cdot LD_c^{-1}p \]

 - \(p \): the vector of length \(N \)
 - \(e \): the vector of \(N \) ones
 - \(D_c = \text{diag}(c) \): diagonal elements are \(c_i \)
 - \(L \): \(N \times N \) matrix of \(L_{ij} \)’s

- Introduce normalization \(e^T p = N \) so that average PageRank is 1
 \[
 p = \left[(1 - d)ee^T/N + dLD_c^{-1} \right] p \\
 = Ap

 \]
PageRank

• p/N is the stationary distribution of a Markov chain over the N webpages

• In order to find p, we use power method
 – Initialize $p = p_0$
 – Iterate to find fixed point p

$$ p_k \leftarrow Ap_{k-1}; \quad p_k \leftarrow N \frac{p_k}{e^T p_k} $$
IsoRank

• Stage 1: Given two networks G_1 and G_2, compute the similarity scores R_{ij} for a pair of protein for node i in vertex set V_1 in G_1 and protein for node j in vertex set V_2 in G_2
 – Use PageRank algorithm

• Stage 2: Given the matrix R of R_{ij}, find the global alignment using a greedy algorithm
From PageRank to IsoRank

- **PageRank** ranks webpages, whereas **IsoRank** ranks the pairs of proteins from the two networks to be aligned.

- **PageRank** uses the hyperlink information from neighboring nodes to recursively compute the ranks, whereas **IsoRank** uses the sequence similarity and network connectivity with other neighboring nodes to define the ranks.
IsoRank

• Similarly to PageRank, pairwise similarity score R_{ij} is recursively defined as

$$R_{ij} = \sum_{u \in N(i)} \sum_{v \in N(j)} \frac{1}{|N(u)||N(v)|} R_{uv} \quad i \in V_1, j \in V_2.$$

 – $N(i)$: the set of neighbors of node u within the graph of u

• Using matrix notation

$$R = AR,$$

where

$$A[i, j][u, v] = \begin{cases}
\frac{1}{|N(u)||N(v)|} & \text{if } (i, u) \in E_1, (j, v) \in E_2 \\
0 & \text{otherwise}
\end{cases}$$

• A is a large but sparse matrix
IsoRank Example

\[
\begin{align*}
R_{aa'} &= \frac{1}{4} R_{bb'} \\
R_{bb'} &= \frac{1}{3} R_{ac'} + \frac{1}{3} R_{a'c'} + R_{aa'} + \frac{1}{9} R_{cc'} \\
R_{cc'} &= \frac{1}{4} R_{bb'} + \frac{1}{2} R_{be'} + \frac{1}{2} R_{bd'} + \frac{1}{2} R_{eb'} + \frac{1}{2} R_{db'} + R_{ee'} + R_{ed'} + R_{de'} + R_{dd'} \\
R_{dd'} &= \frac{1}{9} R_{cc'}
\end{align*}
\]
IsoRank Example

\[R_{aa'} = \frac{1}{4} R_{bb'} \]
\[R_{bb'} = \frac{1}{3} R_{ac'} + \frac{1}{3} R_{a'c} + R_{aa'} + \frac{1}{9} R_{cc'} \]
\[R_{cc'} = \frac{1}{4} R_{bb'} + \frac{1}{2} R_{be'} + \frac{1}{2} R_{bd'} + \frac{1}{2} R_{eb'} + \frac{1}{2} R_{db'} + R_{ee'} + R_{ed'} + R_{de'} + R_{dd'} \]

\[R_{dd'} = \frac{1}{9} R_{cc'} \]

<table>
<thead>
<tr>
<th></th>
<th>a'</th>
<th>b'</th>
<th>c'</th>
<th>d'</th>
<th>e'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.0312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>0.1250</td>
<td></td>
<td>0.0625</td>
<td>0.0625</td>
</tr>
<tr>
<td>c</td>
<td>0.0937</td>
<td></td>
<td>0.2812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>0.0625</td>
<td>0.0312</td>
<td>0.0312</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td>0.0625</td>
<td>0.0312</td>
<td>0.0312</td>
</tr>
</tbody>
</table>
IsoRank

• When the network edges are weighted

\[R_{ij} = \sum_{u \in N(i)} \sum_{v \in N(j)} \frac{w(i, u)w(j, v)}{\sum_{r \in N(u)} w(r, u) \sum_{q \in N(v)} w(q, v)} R_{uv} \]

\[i \in V_1, j \in V_2 \]

• Power method can be used to compute \(R_{ij} \)’s
IsoRank

- Incorporating sequence similarity information E

\[
R = \alpha AR + (1 - \alpha)E, \quad 0 \leq \alpha \leq 1, \text{ or }
\]

\[
R = (\alpha A + (1 - \alpha)E1^T)R.
\]

- $\alpha = 0$: only sequence similarity information is used but no network information is used.
- $\alpha = 1$: only network information is used.
IsoRank: Stage 2

- Extracting node-mapping information for global alignment given pairwise similarity scores R_{ij}
 - One-to-one mapping
 - Any node is mapped to at most one node in the network from other species
 - Efficient computation
 - Ignores gene duplication
 - Many-to-many mapping
 - Finds clusters of orthologous genes across networks from different species
 - Mapping criterion: identify pairs of nodes that have high R_{ij} scores, while ensuring the mapping obeys transitive closures – if the mapping contains (a,b) and (b,c), it should contain (a,c)
IsoRank: Stage 2

• One-to-one mapping
 – Greedy approach
 – Select the highest scoring pair
IsoRank: Stage 2

• Many-to-many mapping
 – Greedy approach
 – Form a k-partite graph with k graphs
 – Iterate until k-partite graph has no edges
 • Finding seed pair:
 – select the edge (i,j) with the highest score R_{ij} (i,j are from two different graphs G_1 and G_2)
 • Extend the seed:
 – In $(G_3, ..., G_k)$, find a node l, such that 1) R_{lj} and R_{li} are the highest scores between l and any node in G_1 and G_2, and 2) R_{li} and R_{lj} exceed a certain threshold
 • Remove from k-partite graph the match set
Results

• Alignment PPI networks from five species
 – S. cerevisiae, D. Melanogaster, C. elegans, M. musculus, H. sapiens
 – The common subgraph supported by the global alignment contains
 • 1,663 edges supported by at least two PPI networks
 • 157 edges supported by at least three networks
 – The alignment by sequence-only (no network) method contains
 • 509 edges with support in two or more species
 • 40 edges supported by at least three networks
Results

- Subgraphs selected from yeast-fly PPI network alignment
What you should know

- Different techniques for detecting protein—protein interactions

- Computational methods for analysis of protein-protein interaction data
 - Classification
 - Network alignment