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Outline 

• RNA folding  

• Dynamic programming for RNA secondary structure prediction  

• Covariance model for RNA structure prediction 



RNA Basics 

• RNA bases A,C,G,U 

• Canonical Base Pairs 

– A-U 

– G-C 

– G-U 

“wobble” pairing 

– Bases can only pair with 
one other base. 

 

 



RNA Basics 

• transfer RNA (tRNA) 

• messenger RNA (mRNA) 

• ribosomal RNA (rRNA) 

• small interfering RNA (siRNA) 

• micro RNA (miRNA) 

• small nucleolar RNA (snoRNA) 

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/  

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/


RNA Secondary Structure 
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Pseudoknots 

• Pseudoknots: a nucleic acid secondary structure containing at 
least two stem-loop structures  which half of one stem is 
intercalated between the two halves of another stem. 



Sequence Alignment as a method to 
determine structure 

• Bases pair in order to form backbones and determine the 
secondary structure 

• Aligning bases based on their ability to pair with each 
other gives an algorithmic approach to determining the 
optimal structure 

 

 



Base Pair Maximization – Dynamic 
Programming Algorithm 

Simple Example: 
Maximizing Base Pairing 

Images – Sean Eddy 

S(i,j) is the folding of the subsequence of the RNA strand 
from index i to index j which results in the highest number of 
base pairs 



Base Pair Maximization – Dynamic 
Programming Algorithm 

Simple Example: 
Maximizing Base Pairing 

Base pair at i and j 
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Base Pair Maximization – Dynamic 
Programming Algorithm 

Simple Example: 
Maximizing Base Pairing 

Unmatched at i 
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Base Pair Maximization – Dynamic 
Programming Algorithm 

Simple Example: 
Maximizing Base Pairing 

Umatched at j 
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Base Pair Maximization – Dynamic 
Programming Algorithm 

Simple Example: 
Maximizing Base Pairing 

Bifurcation 

Images – Sean Eddy 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 
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Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 
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dimension 

Initialize first two diagonal 

arrays to 0 
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Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 

Fill in squares sweeping 

diagonally 
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Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 
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Bases cannot pair, similar 

to unmatched alignment 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 

Images – Sean Eddy 

Bases can pair, similar 

to matched alignment 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 

Images – Sean Eddy 

Dynamic Programming –  

possible paths 

S(i + 1, j – 1) +1 



Base Pair Maximization – Dynamic Programming 

Algorithm 
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Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 
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Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 

Images – Sean Eddy 

k = 0 : Bifurcation 
max in this case 

 
S(i,k) + S(k + 1, j) 

Bifurcation – add values 

for all k 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 

Images – Sean Eddy 

Reminder: 
For all k 

 
S(i,k) + S(k + 1, j) 

Bifurcation – add values 

for all k 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent of 

overall structure 

 Bifurcation adds extra 

dimension 
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Reminder: 
For all k 

 
S(i,k) + S(k + 1, j) 

Bifurcation – add values 

for all k 



Base Pair Maximization - Drawbacks 

• Base pair maximization will not necessarily lead to the most 
stable structure 
– May create structure with many interior loops or hairpins which are 

energetically unfavorable 

• Comparable to aligning sequences with scattered matches – 
not biologically reasonable 



Energy Minimization 

• Thermodynamic Stability 

– Estimated using experimental techniques 

– Theory : Most Stable is the Most likely 

• No Pseudknots due to algorithm limitations 

• Uses Dynamic Programming alignment technique 

• Attempts to maximize the score taking into account 
thermodynamics 

• MFOLD and ViennaRNA 



Energy Minimization Results 

• Linear RNA strand folded back on itself to create secondary 
structure 

• Circularized representation uses this requirement 
– Arcs represent base pairing 

Images – David Mount 



Energy Minimization Results 

• Linear RNA strand folded back on itself to create secondary 
structure 

• Circularized representation uses this requirement 
– Arcs represent base pairing 

Images – David Mount 

 All loops must have at least 3 bases in them 
 Equivalent to having 3 base pairs between all arcs 

Exception: Location where the beginning and end of RNA come together in 
circularized representation 



Trouble with Pseudoknots 

• Pseudoknots cause a breakdown in the Dynamic Programming 
Algorithm. 

• In order to form a pseudoknot, checks must be made to ensure 
base is not already paired – this breaks down the recurrence 
relations 

Images – David Mount 



Energy Minimization Drawbacks 

• Compute only one optimal structure 

• Usual drawbacks of purely mathematical approaches 
– Similar difficulties in other algorithms 

• Protein structure 

• Exon finding 



Alternative Algorithms - Covariaton 

• Incorporates Similarity-based method 
– Evolution maintains sequences that are important 

– Change in sequence coincides to maintain structure through base pairs 
(Covariance) 

• Cross-species structure conservation example – tRNA 

• Manual and automated approaches have been used to 
identify covarying base pairs 

• Models for structure based on results 
– Ordered Tree Model 

– Stochastic Context Free Grammar  

 



Alternative Algorithms - Covariaton 

Expect areas of base 
pairing in tRNA to be  
covarying between 
various species 
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Alternative Algorithms - Covariaton 

Expect areas of base 
pairing in tRNA to be  
covarying between 
various species 

Base pairing creates  
same stable tRNA  
structure in organisms 
  

Mutation in one base 
yields pairing  
impossible and breaks 
down structure 

Covariation ensures 
ability to base pair is  
maintained and RNA 
structure is conserved 



Binary Tree Representation of RNA Secondary 
Structure 

• Representation of  RNA structure using 
Binary tree 

• Nodes represent 

– Base pair if two bases are shown 

– Loop if base and “gap” (dash) are 
shown 

• Traverse root to leaves, from left to 
right 

• Pseudoknots still not represented 

• Tree does not permit varying sequences 

– Mismatches 

– Insertions & Deletions 

Images – Eddy et al. 



Covariance Model 

• HMM which permits flexible alignment to an RNA structure –  

– emission and transition probabilities  

• Model trees based on finite number of states  

– Match states – sequence conforms to the model: 
• MATP – State in which bases are paired in the model and sequence 

• MATL & MATR – State in which either right or left bulges in the sequence 
and the model 

– Deletion – State in which there is deletion in the sequence when 
compared to the model 

– Insertion – State in which there is an insertion relative to model 

• Transitions have probabilities 

– Varying probability – Enter insertion, remain in current state, etc 

– Bifurcation – no probability, describes path 

 



Alignment to CM Algorithm  

• Calculate the probability score 
of aligning RNA to CM 

• Three dimensional matrix – 
O(n³) 
– Align sequence to given subtrees 

in CM  

– For each subsequence calculate 
all possible states 

• Subtrees evolve from 
Bifurcations 
– For simplicity Left singlet is 

default 

Images – Eddy et al. 



•For each calculation take into 
account the  

•Transition (T) to next state  
•Emission probability (P) in the state 
as determined by training data 

Images – Eddy et al. 
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•For each calculation take into 
account the  

•Transition (T) to next state  
•Emission probability (P) in the state 
as determined by training data 

Deletion – does not have an emission  
probability (P) associated with it 
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Alignment to CM Algorithm  



•For each calculation take into 
account the  

•Transition (T) to next state  
•Emission probability (P) in the state 
as determined by training data 

Bifurcation – does not have a probability 
associated with the state 

Images – Eddy et al. 

Alignment to CM Algorithm  



Model Training 



Covariance Model (CM) Training Algorithm 

• S(i,j) = Score at indices i and j in RNA when aligned to the 
Covariance Model 

Independent frequency of seeing the  
symbols (A, C, G, T) in locations i or j  
depending on symbol. 

 Frequencies obtained by aligning model to “training 

data” – consists of sample sequences 

 Reflect values which optimize alignment of sequences to 

model 

Frequency of seeing the symbols  
(A, C, G, T) together in locations i 
and j  
depending on symbol. 



Mutual information for RNA Secondary 
Structure Prediction 



Covariance Model Drawbacks 

• Needs to be well trained 

• Not suitable for searches of large RNA 
– Structural complexity of large RNA cannot be modeled 

– Runtime 

– Memory requirements 
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