RNA Secondary Structure Prediction

02-710 Computational Genomics
Seyoung Kim
Outline

• RNA folding
• Dynamic programming for RNA secondary structure prediction
• Covariance model for RNA structure prediction
RNA Basics

- RNA bases A, C, G, U
- Canonical Base Pairs
 - A-U
 - G-C
 - G-U
 "wobble" pairing
 - Bases can only pair with one other base.

DNA → RNA → Protein
RNA Basics

- transfer RNA (tRNA)
- messenger RNA (mRNA)
- ribosomal RNA (rRNA)
- small interfering RNA (siRNA)
- micro RNA (miRNA)
- small nucleolar RNA (snoRNA)

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
Pseudoknots

• Pseudoknots: a nucleic acid secondary structure containing at least two stem-loop structures which half of one stem is intercalated between the two halves of another stem.
Sequence Alignment as a method to determine structure

- Bases pair in order to form backbones and determine the secondary structure
- Aligning bases based on their ability to pair with each other gives an algorithmic approach to determining the optimal structure
Base Pair Maximization – Dynamic Programming Algorithm

Simple Example: Maximizing Base Pairing

\[S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i, j \text{ base pair]} \\
S(i + 1, j) \\
S(i, j - 1) \\
\max_{i < k < j} S(i, k) + S(k + 1, j)
\end{cases} \]

\(S(i,j) \) is the folding of the subsequence of the RNA strand from index \(i \) to index \(j \) which results in the highest number of base pairs.
Base Pair Maximization – Dynamic Programming Algorithm

Simple Example: Maximizing Base Pairing

\[
S(i,j) = \max \begin{cases}
S(i+1,j-1) + 1 & \text{[if } i,j \text{ base pair]} \\
S(i+1,j) \\
S(i,j-1) \\
\max_{i<k<j} S(i,k) + S(k+1,j)
\end{cases}
\]

Base pair at \(i\) and \(j\)
Base Pair Maximization – Dynamic Programming Algorithm

Simple Example: Maximizing Base Pairing

\[S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i,j \text{ base pair]} \\
S(i + 1, j) & \\
S(i, j - 1) & \\
\max_{i < k < j} S(i, k) + S(k + 1, j) &
\end{cases} \]

Unmatched at i
Base Pair Maximization – Dynamic Programming Algorithm

Simple Example: Maximizing Base Pairing

\[
S(i,j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i, j \text{ base pair]} \\
S(i + 1, j) \\
S(i, j - 1) \\
\max_{i < k < j} S(i, k) + S(k + 1, j)
\end{cases}
\]

Umatched at \(j \)
Base Pair Maximization – Dynamic Programming Algorithm

Simple Example: Maximizing Base Pairing

\[S(i, j) = \max \begin{cases}
S(i + 1, j - 1) + 1 & \text{[if } i, j \text{ base pair]} \\
S(i + 1, j) & \\
S(i, j - 1) & \\
\max_{i < k < j} S(i, k) + S(k + 1, j)
\end{cases} \]

Bifurcation
Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs

- Each score independent of overall structure

- Bifurcation adds extra dimension
Base Pair Maximization – Dynamic Programming Algorithm

- **Alignment Method**
 - Align RNA strand to itself
 - Score increases for feasible base pairs

- Each score independent of overall structure

- Bifurcation adds extra dimension

Initialize first two diagonal arrays to 0
Base Pair Maximization – Dynamic Programming Algorithm

- **Alignment Method**
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Fill in squares sweeping diagonally
Base Pair Maximization – Dynamic Programming Algorithm

- **Alignment Method**
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- **Each score independent of overall structure**
- **Bifurcation adds extra dimension**

Bases cannot pair, similar to unmatched alignment
Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Bases can pair, similar to matched alignment

Images – Sean Eddy
Base Pair Maximization – Dynamic Programming Algorithm

- **Alignment Method**
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Dynamic Programming – possible paths

```
S(i + 1, j - 1) + 1
```
Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Dynamic Programming – possible paths

Images – Sean Eddy
Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Dynamic Programming – possible paths
Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Bifurcation – add values for all k

\[k = 0 : \text{Bifurcation max in this case} \]

\[S(i,k) + S(k + 1, j) \]
Base Pair Maximization – Dynamic Programming Algorithm

- Alignment Method
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Reminder:
For all k

$$S(i,k) + S(k+1, j)$$
Base Pair Maximization – Dynamic Programming Algorithm

- **Alignment Method**
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- **Each score independent of overall structure**
- **Bifurcation adds extra dimension**

Reminder: For all k

$$S(i, k) + S(k + 1, j)$$

Images – Sean Eddy
Base Pair Maximization - Drawbacks

- Base pair maximization will not necessarily lead to the most stable structure
 - May create structure with many interior loops or hairpins which are energetically unfavorable
- Comparable to aligning sequences with scattered matches – not biologically reasonable
Energy Minimization

- Thermodynamic Stability
 - Estimated using experimental techniques
 - Theory: Most Stable is the Most likely
- No Pseudoknots due to algorithm limitations
- Uses Dynamic Programming alignment technique
- Attempts to maximize the score taking into account thermodynamics
- MFOLD and ViennaRNA
Energy Minimization Results

- Linear RNA strand folded back on itself to create secondary structure
- Circularized representation uses this requirement
 - Arcs represent base pairing

Images – David Mount
Energy Minimization Results

- All loops must have at least 3 bases in them
 Equivalent to having 3 base pairs between all arcs

Exception: Location where the beginning and end of RNA come together in circularized representation

Images – David Mount
Trouble with Pseudoknots

- Pseudoknots cause a breakdown in the Dynamic Programming Algorithm.
- In order to form a pseudoknot, checks must be made to ensure base is not already paired – this breaks down the recurrence relations.
Energy Minimization Drawbacks

• Compute only one optimal structure
• Usual drawbacks of purely mathematical approaches
 – Similar difficulties in other algorithms
 • Protein structure
 • Exon finding
Alternative Algorithms - Covariation

• Incorporates Similarity-based method
 – Evolution maintains sequences that are important
 – Change in sequence coincides to maintain structure through base pairs (Covariance)
 • Cross-species structure conservation example – tRNA

• Manual and automated approaches have been used to identify covarying base pairs

• Models for structure based on results
 – Ordered Tree Model
 – Stochastic Context Free Grammar
Alternative Algorithms - Covariation

Expect areas of base pairing in tRNA to be covarying between various species.
Base pairing creates same stable tRNA structure in organisms
Alternative Algorithms - Covariation

Mutation in one base yields pairing impossible and breaks down structure
Alternative Algorithms - Covariation

Covariation ensures ability to base pair is maintained and RNA structure is conserved.
Binary Tree Representation of RNA Secondary Structure

- Representation of RNA structure using Binary tree
- Nodes represent
 - Base pair if two bases are shown
 - Loop if base and “gap” (dash) are shown
- Traverse root to leaves, from left to right
- Pseudoknots still not represented
- Tree does not permit varying sequences
 - Mismatches
 - Insertions & Deletions

Images – Eddy et al.
Covariance Model

• HMM which permits flexible alignment to an RNA structure –
 – emission and transition probabilities
• Model trees based on finite number of states
 – Match states – sequence conforms to the model:
 • MATP – State in which bases are paired in the model and sequence
 • MATL & MATR – State in which either right or left bulges in the sequence and the model
 – Deletion – State in which there is deletion in the sequence when compared to the model
 – Insertion – State in which there is an insertion relative to model
• Transitions have probabilities
 – Varying probability – Enter insertion, remain in current state, etc
 – Bifurcation – no probability, describes path
Alignment to CM Algorithm

- Calculate the probability score of aligning RNA to CM
- Three dimensional matrix – $O(n^3)$
 - Align sequence to given subtrees in CM
 - For each subsequence calculate all possible states
- Subtrees evolve from Bifurcations
 - For simplicity Left singlet is default

Images – Eddy et al.
Alignment to CM Algorithm

For each calculation take into account the
- Transition (T) to next state
- Emission probability (P) in the state as determined by training data

\[S_{i,j,y}(y = MATP) = \max_{y_{\text{next}}} [S_{i+1,j-1,y_{\text{next}}} + \log T(y_{\text{next}} | y) + \log P(x_i, x_j | y)] \]
Alignment to CM Algorithm

Images – Eddy et al.

• For each calculation take into account the
 • Transition (T) to next state
 • Emission probability (P) in the state as determined by training data

\[
S_{i,j,y}(y = MATR, INSR) = \max_{y_{next}} \left[S_{i,j-1,y_{next}} + \log T(y_{next} \mid y) + \log P(x_j \mid y) \right]
\]
Alignment to CM Algorithm

For each calculation take into account the

• Transition (T) to next state
• Emission probability (P) in the state as determined by training data

\[
S_{i,j,w}(y = MATR, INSR) = \max_{y_{next}} [S_{i,j-1,w_{next}} + \log T(y_{next} \mid y) + \log P(x_j \mid y)]
\]
Alignment to CM Algorithm

For each calculation take into account the
- Transition (T) to next state
- Emission probability (P) in the state as determined by training data

Deletion – does not have an emission probability (P) associated with it

\[S_{i,j,y}(y = DEL) = \max_{y_{next}} [S_{i,j,y_{next}} + \log \mathcal{T}(y_{next} | y)] \]
Alignment to CM Algorithm

- For each calculation take into account the
 - Transition (T) to next state
 - Emission probability (P) in the state as determined by training data

Images – Eddy et al.

\[\text{Si,j,y}(y = BIFURC) = \max_{i-1<=mid<=j} \left[S_{i,mid,y,left} + S_{mid+1,j,y,right} \right] \]
Model Training

unaligned sequences

random alignment

multiple alignment

alignment

(EM)

parameter reestimation

covariance model

model construction (structure prediction)
Covariance Model (CM) Training Algorithm

- \(S(i,j) = \text{Score at indices } i \text{ and } j \text{ in RNA when aligned to the Covariance Model} \)

\[
S(i,j) = \max \left\{ \begin{array}{l}
S(i+1,j-1) + M(i,j) \\
S(i+1,j) \\
S(i,j-1) \\
\max_{i<k<j} S(i,k) + S(k+1,j)
\end{array} \right.
\]

- \(M_{i,j} = \sum_{x_i,x_j} f_{x_i,x_j} \log_2 \frac{f_{x_i,x_j}}{f_{x_i}f_{x_j}} \)

 Frequency of seeing the symbols (A, C, G, T) together in locations \(i \) and \(j \) depending on symbol.

 Independent frequency of seeing the symbols (A, C, G, T) in locations \(i \) or \(j \) depending on symbol.

- Frequencies obtained by aligning model to "training data" – consists of sample sequences
 - Reflect values which optimize alignment of sequences to model
Mutual information for RNA Secondary Structure Prediction
Covariance Model Drawbacks

• Needs to be well trained
• Not suitable for searches of large RNA
 – Structural complexity of large RNA cannot be modeled
 – Runtime
 – Memory requirements
References