Sequencing and assembly

Sanger sequencing

- Invented by Frederick Sanger in 1970
- Starts with a primer templatea short sequence complementary to the sequence of interest
- Specific
- Read length up to 800
- Accurate
- Still used today to sequence clones or verify NGS results

(b) Primer elongation, chain termination upon incorporation of ddNTP, separation, detection

5, ПTITITTTT 3^{\prime} oligonucleotide primer (hybridizes to template)
3^{\prime} (5^{\prime} DNA template

5^{\prime} คTTITITTM ${ }^{3}$
5^{\prime} HTTITTITT ${ }^{\circ} 3^{\prime}$ Chain termination via incorporation of ddGTP
5^{\prime},

5' ПTTITITTIT Pareape 3^{\prime} Chain termination via incorporation of ddTTP
5^{\prime} /TTITITTTT

Capillary gel electrophoresis to separate DNA fragments by size \dagger
Laser detection of labeled ddNTPs
Det
Determination of DNA sequence inferred by pattern of chain termination

Next Generation Sequencing (NGS)

- A series of different technologies enabling fast automated sequencing
- Most technologies have short read length
- Cost is dramatically reduced
- Each technology has its own error profile


```
MIT
Technology
Review
```


Illumina

- DNA is randomly fragmented followed by size selection
- Adapters are ligated at each end so that the fragment can bind to the flow cell surface
- Each single fragment is amplified in place with "bridge amplification"
- There are 4 reversible terminators which are added at the same time
- Locations of the added bases is read out by laser scanning
- Most widely used platform

ABI Solid

- Library prep is the same
- Amplification is emulsion based
- DNA sequenced by ligation
- Very low error rate
- Complex error model

Ion Torrent

- Direct detection of nucleotide incorporation
- Basically a very good pH meter
- Very fast
- Used for clinical sequencing
- High error rate
- Non-trivial error model
- Sequential nucleotide addition --problems counting consecutive identical nucleotides

Pacific Biosciences

- Immobilized polymerase
- Allows for fluorescent pulse detection
- Very long read length
- Can span repetitive elements

- Can be used in hybrid sequencing, combining short and long reads

Comparison

Platform	Read length	Reads per run	Run time	Cost per megabsse	Accuracy	Error type
Sanger	$400-900$		<3hours	2400	99.9	Single nucleotide substitutions
Illumina	$50-250$	3 billion	$1-10$ days	~ 0.10	98	Single nucleotide substitutions
SOLiD	50	~ 1.4 billion	$7-14$ days	0.13	99.9	AT bias
Ion torrent	200	<5 million	2 hours	2	99	deletions
PacBio	2900	75,000	<2 hours	2	99	GC deletions

What do we sequence

- Human genome-want to look for variation
- Cancer genome often looks very different from reference
- Human exome- looking for variation in coding genes
- A new organism's genome
- A new organisms transcriptome
- Much smaller than genome
- Produces sequence of mRNA only
- Sequence from functional assays
- Transcript quantification-RNAseq
- Chromatin (histones, transcription factors, etc.) capture

Output:Fastq

- Sequence followed by quality line
- Most platforms can sequence fragments at both ends - two matches fastq files
- Paired sequence information is crucial in assembly task
- Mate pairs—should be in the correct orientation and approximately the right distance apart

Sequence

@FORJUSP02AJWD1

CCGTCAATTCATTTAAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGT $+$
AAAAAAAAAAAA: :99@: : : : ??@@: :FFAAAAACCAA: : : : BB@@?A?

```
Q scores (as ASCII chars)
```

```
Base=T, Q=':'=25
```

Adapter Left DNA Insert Adapter Right

Using a reference genome: Alignment of reads to a reference

Structural variation

SV class	Assembly	Read pair	Read depth	Split read
Deletion		\because		
Novel sequence insertion			Not applicable	
Mobileelement insertion		$\begin{array}{\|c\|c\|} \hline \text { Annotated transposon } \\ \rightarrow-\alpha-\alpha-1 \end{array}$	Not applicable	
Inversion			Not applicable	
Interspersed duplication			$\equiv y^{3}=$	
Tandem duplication			$\overline{y=3}$	

Sequencing a new genome

- We want a complete assembly with all nucleotides of each chromosome in the right order
- Human genome projectreads spanning 800bp are put together into 3biliion pairs
- Some definitions
- Contig: a continuous piece of DNA sequence where base pair identity is known with high confidence
- Scaffold: a series of contigs assembled in the correct order but possibly with gaps

Assembly strategies

- Overlap layout consensus
- Greedy
- Merge largest overlap
- Proceed until no overlaps remain
- Uses local information only
- Graph based
- Create a graph representing sequence overlaps
- Reduce/prune
- Find consensus contigs
- Can use global information such as mate-pair distance
- Graph representation
- Overlap
- DeBruijn graph

Two graph representations

Vertices are k-mers
Edges are pairwise alignments.

Genome: ATGGCGTGCAATG

Hamiltonian cycle Visit each vertex once (harder to solve)

Vertices are ($k-1$)-mers
\ddots Edges are k-mers
$\ddots^{\prime} \ddots_{1}$

Eulerian cycle
Visit each edge once
(easier to solve)

Sequencing errors

- Reads contain errors
- We allow for imperfect overlap in overlap graphs
- In DeBruijn graphs errors
 are bulges specifying alternative paths
- Bulges are pruned based on read number, error model, and other heuristics
- Overlap graph
- Works well with large reads: sanger sequenced genomes
- Human genome project
- Computationally expensive
- Doesn't handle repeats well
- DeBruijn graph
- Preferred for shorter reads
- Path finding is more efficient
- Compactly handles repeats
(a) DNA sequence with a triple repeat

(b) layout graph

[^0]

DeBruijn graph with repeats

Repeats in Human Genome

- Repetitive DNA makes up a very large part of big eukaryotic genomes.
- Characterized by size and abundance.
- Many of these elements are remnants of virus-like sequences that once hopped around our genome.
- All but the SINEs contain functional sequence encoding genes such as transposase that are responsible for this hopping behavior. Most are inactive.
- The most abundant SINES family are the Alu repeats, with over 1 million copies comprising 10% of the genome.
- Also, families of recently duplicated genes

Element	Lengt $\mathrm{h}(\mathrm{kb})$	Human number	Genome Fraction
Retroviruses/ Retroposons	$1-11$	450,000	8%
LINES (long interspersed elements)	$6-8$	850,000	17%
SINES (short interspersed elements)	~ 0.3	$1,500,000$	15%
Transposons	$2-3$	300,000	3%

Mis-assembled repeats

Human Genome assembly is not complete

- chr1_random chr2_random chr3_random chr4_random chr5_random chr6_random chr7_random chr8_random chr9_random chr10_random chr11_random chr13_random chr15_random chr16_random chr17_random chr18_random chr19_random chr21_random chr22_random chrX_random

Handling repeats

Repeat detection

- pre-assembly: find fragments that belong to repeats
- statistically (most existing assemblers)
- repeat database (RepeatMasker)
- during assembly: detect graph structures indicative of repeats and resolve them

- Use mate-pair information
- post-assembly: find repetitive regions and potential mis-assemblies.
- RepeatMasker
- "unhappy" mate-pairs (too close, too far, misoriented)

Statistical repeat detection

- Significant deviations from average coverage flagged as repeats.
- frequent k-mers are ignored
- "arrival" rate of reads in contigs compared with theoretical value
(e.g., 800 bp reads \& 8x coverage - reads "arrive" every 100 bp)

Problem 1: assumption of uniform distribution of fragments - leads to false positives
non-random libraries
Problem 2: repeats with low copy number are missed - leads to false negatives

Most widely used genome sequence is filtered for repeats

- hg38.fa.gz - "Soft-masked" assembly sequence in one file. Repeats from RepeatMasker and Tandem Repeats Finder (with period of 12 or less) are shown in lower case; non-repeating sequence is shown in upper case.
- hg38.fa.masked.gz - "Hard-masked" assembly sequence in one file. Repeats are masked by capital Ns; non-repeating sequence is shown in upper case.
- RepeatMasker screens DNA sequences for interspersed repeats and low complexity DNA sequences.
- Tandem Repeat Finder looks for short tandem repeats - ATGATGATGATG

Aligning to a reference - not necessarily so simple

- RNAseq quantification by sequencing
- Genes producing more transcripts will have more reads
- We need to map each read to the right gene

- Problems
- Genes overlap-often in the UTR

Gene function analysis

- Homologous genes
- Sequencing errors in high abundance genes can map to a completely different location

One solution—RSEM

- Assign ambiguous reads in proportion with unambiguous reads

RNAseq-identifying complete transcripts

- Reads contained in an exon don't tell us how the exons are connected
- Junction spanning reads tell us local connectivity
- Such reads do not align continuously in the genome and present an alignment challenge

Assembling transcripts

- splice graph, nodes represent exons or parts of exons, and paths through the graph represent possible splice variants supported by junction reads
- StringTie
- Find maximum flow through "heaviest" path
- Assemble transcript
- Compute expression
- Remove reads that contributed to the total expression
- Repeat

Compute minimum path cover to generate transcripts

Maximum likelihood abundance estimation

[^0]: (c) Construction of de Bruijn graph by gluing repeats
 (d) de Bruijn graph

