Genome-Wide Association Study

02-710 Computational Genomics
Seyoung Kim

Overview

- How can we identify the genetic loci responsible for determining phenotypes?
 - Linkage analysis
 - Data are collected for family members
 - Difficult to collect data on a large number of families
 - Effective for rare diseases
 - Low resolution on the genomes due to only few recombinations
 - » a large region of linkage
 - Genome-wide association studies
 - Data are collected for unrelated individuals
 - Easier to find a large number of affected individuals
 - Effective for common diseases, compared to family-based method
 - Relatively high resolution for pinpointing the locus linked to the phenotype

Overview

- Statistical methods for testing genotype/phenotype associations
 - Discrete-valued phenotype: case/control study
 - Continuous-valued phenotype: quantitative traits
 - Sparse regression method for considering all of the SNP markers
 - Multimarker association test
- Issues arising in GWAS
 - Genotype imputation
 - From common to rare variants
 - Epistasis for multiple interacting loci
 - Correcting for population structure

Population Genotype/Phenotype Data

Phenotype data

Genotype data

$$oldsymbol{y} = egin{pmatrix} y^1 \ \vdots \ y^N \end{pmatrix} \stackrel{\text{Sending in Signature}}{=} egin{pmatrix} x_1^1 & \dots & x_J^1 \ \vdots & & \vdots \ x_1^N & \dots & x_J^N \end{pmatrix} \stackrel{\text{Signature}}{=} egin{pmatrix} x_1^N & \dots & x_J^N \ \end{bmatrix}$$

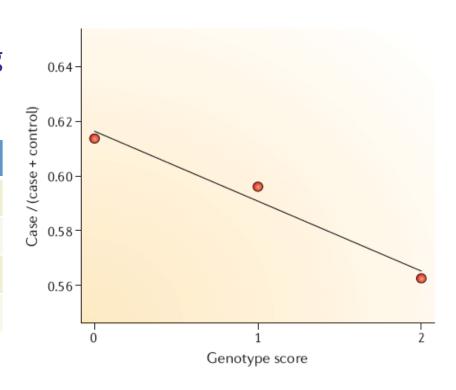
- 0 or 1 for case/control studies
 - e.g., healthy/diabetic
- Real-valued phenotypes
 - e.g., cholesterol level

Single SNP Association Test: Case/Control Study

 For each marker locus, find the 3x2 contingency table containing the counts of three genotypes

Genotype	Case	Control
AA	Ncase,AA	Ncontrol,AA
Aa	Ncase,Aa	Ncontrol,Aa
aa	Ncase,aa	Ncontrol,aa
Total	Ncase	Ncontrol

• χ^2 test with 2 df under the null hypothesis of no association



Genotype score = the number of minor alleles

Single SNP Association Analysis: Case/Control Study

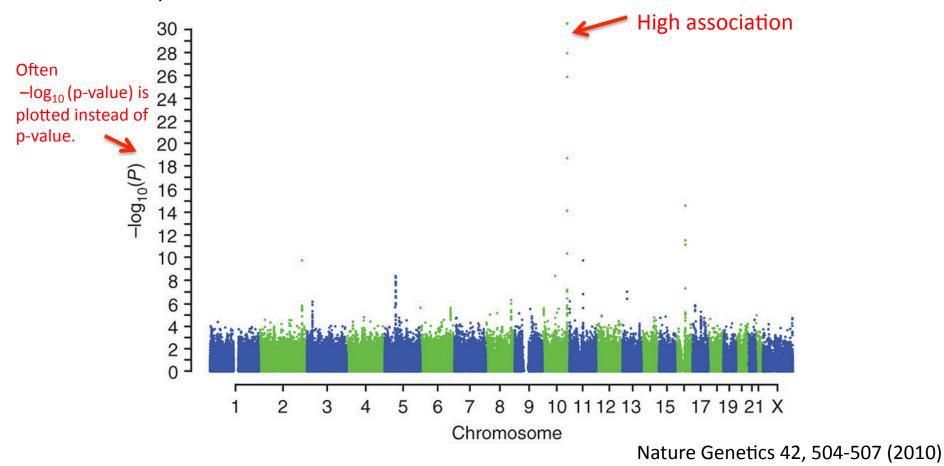
- Alternatively, assume the heterozygote risk is approximately between the two homozygotes
- Form a 2x2 contingency table. Each individual contributes twice from each of the two chromosomes.

Genotype	Case	Control
Α	Gcase,A	Gcontrol,A
а	G _{case,a}	Gcontrol,a
Total	2xNcase	2xNcontrol

• χ^2 test with 1df

Manhattan Plot of p-values from Breast Cancer GWAS

 Analysis of 582,886 SNPs for 3,659 cases with family history and 4,897 controls



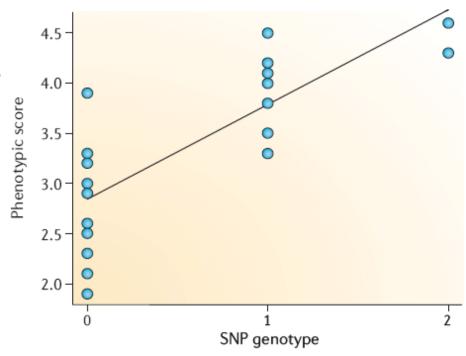
Single SNP Association Test: Continuous-valued Traits

- Continuous-valued traits
 - Also called quantitative traits
 - Cholesterol level, blood pressure etc.
- For each locus, fit a linear regression at each locus

$$y_i = x_i \beta + \varepsilon$$

$$\uparrow \qquad \uparrow$$
phenotype genotype (number of minor alleles)

• t-test with null hypothesis "No associations, i.e., $\beta = 0$ "



Genetic Model for Association

- Additive effect of minor allele, assuming effect size a for each minor allele
 - Major allele homozygote: 0
 - Heterozygote: a
 - Minor allele homozygote: 2a
- Generalizing additive genetic models for heterozygotes: $a + a \times k$
 - -k=1: dominant effect of the minor allele
 - k=0: no dominance
 - k=-1: dominant effect of the major allele
- Penetrance
 - Proportions of individuals carrying a particular allele that possess an associated trait
 - Alleles with high penetrance are easier to detect

Correcting for Multiple Testing

- What happens when we scan the genome of 1 million genetic markers for association with $\alpha = 0.05$?
 - 50,000 (=1 millionx0.05) SNPs are expected to be found significant just by chance
 - We need to be more conservative when we decide a given marker is significantly associated with the trait.
- Correction methods
 - Bonferroni correction
 - Permutation test

Bonferroni Correction

- If N markers are tested, we correct the significance level as $\alpha' = \alpha/N$
 - Assumes the N tests are independent, although this is not true because of the linkage disequilibrium.
 - Overly conservative for tightly linked markers

Permutation Procedure

- In order to generate the null distribution
 - Step 1: Set N_{sig} = 0
 - Step 2: Repeat 1:N_{perm}
 - Step 3a: Randomly permute the individuals in the phenotype data to generate datasets with no association (retain the original genotype)
 - Step 3b: Find the test statistics T_{perm} of SNPs using the permuted dataset
 - $-T_1, ..., T_{Nperm}$ form a null distribution
- Compute the test statistic T using the original dataset and test with the above null distribution

This approach is computationally demanding because often a large N_{perm} is required.

Vector/Matrix Representation

 Sparse regression method to evaluate the effect of each SNP in the context of all other SNPs

 Sparsity constraint: Only few SNPs are influencing the given phenotype and the rest of the SNPs have effect size 0, no multiple-hypothesis-testing problem

L1 Regularization (LASSO)

A convex relaxation.

Constrained Form

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2$$
 subject to:

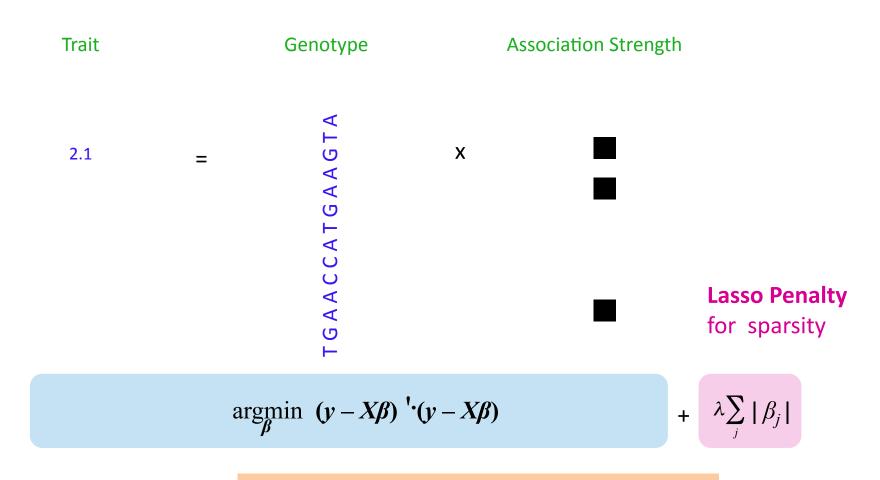
$$\sum_{j=1}^{p} |\beta_j| \le C$$

Lagrangian Form

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
 $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1$

Still enforces sparsity!

Lasso for Reducing False Positives



Many zero associations (sparse results)

Multi-marker (Haplotype) Association Test

- Idea: a haplotype of multiple SNPs is a better proxy for a true causal SNP than a single SNP
- Form a new allele by combining multiple SNPs for a haplotype

SNP A	SNP B	Auxiliar	y Mar	kers fo	or Hapl	otypes
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	

Test the haplotype allele for association

Multi-marker Association Test

- Multi-marker approach can capture dependencies across multiple markers
 - SNPs in LD form a haplotype that can be tested as a single allele
 - Can achieve the higher power
 - Haplotypes are more powerful discriminators between cases and controls in disease association studies
- Challenge as the size of haplotype increases
 - Haplotype of K SNPs results in 2^K different haplotypes, but the number of samples corresponding to each haplotype decreases quickly as we increase K
 - Large K requires a large sample size

Overview

- Statistical methods for testing genotype/phenotype associations
 - Discrete-valued phenotype: case/control study
 - Continuous-valued phenotype: quantitative traits
 - Sparse regression method for considering all of the SNP markers
 - Multimarker association test.
- Issues arising in GWAS
 - Genotype imputation
 - From common to rare variants
 - Epistasis for multiple interacting loci
 - Correcting for population structure

Causal Mutations and Genetic Markers

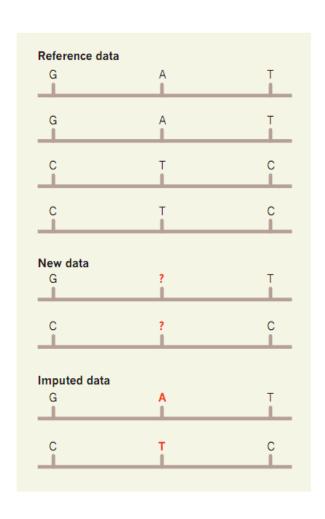
With SNP array data:

Unknown
Causal Known (genotyped)
Mutation SNP Marker

X X X
Linkage
Disequilibrium

- What happens when SNP density increases?
- Fine mapping required to locate the causal mutation
- What happens with whole genome sequencing data?

Increasing SNP Density via Genotype Imputation



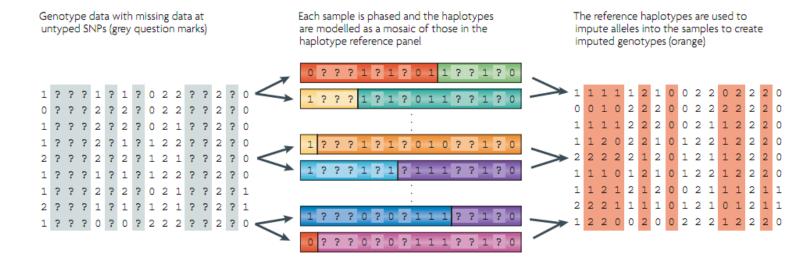
 Reference data: dense SNP data from HapMap III, or 1000 genome project

- New data: SNP data for individuals in a given study
- Data after imputation with the reference data (leverage LD!)

Genotype Imputation

Reference set of haplotypes, for example, HapMap

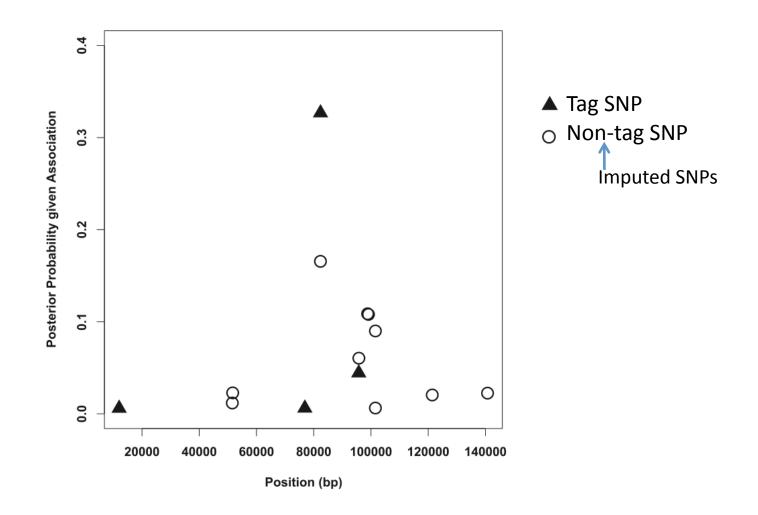
0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	1	1	1	1	0	0	1	0	0	1	1	1	0
1	1	1	1	1	0	1	0	0	1	0	0	0	1	0	1
0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	0	1	1	0	0	1	1	1	0	1	1	1	0
0	0	1	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	1	1	0	1	0	0	1	0	0	0	1	0	1
1	1	1	0	0	1	0	0	1	1	1	0	1	1	1	0
0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0
1	1	1	0	0	1	0	0	1	1	1	0	1	1	1	0



PHASE can be used for imputation!

Imputation-Based Methods

(Servin & Stephens, 2007)



Common Variants vs. Rare Variants

- First-generation genome-wide association study (GWAS): common variant common disease hypothesis
- Common variants with minor allele frequency (MAF)>5%
 - dbGap: ~11 million SNPs
 - HapMap: 3.5 million SNPs
 - A successful GWAS requires a more complete catalogue of genetic variations
- Rare variants (MAF<0.5%), low-frequency variants (MAF:0.5%~5%)
 - Captured by sequencing with next-generation sequencing technology
 - Possibly significant contributors to the genetic architecture of disease
 - Causal variants are subject to negative selection

Associations to Rare Variants

Often GWA studies are underpowered for functional rare variants

Common Variant Association

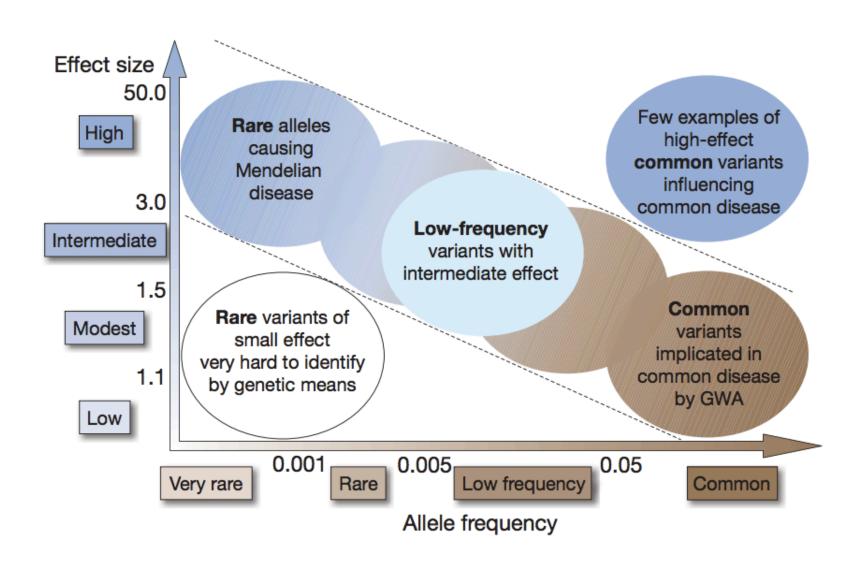
	Case	Control
Allele a	60	20
Allele A	40	80

Rare Variant Association

	Case	Control
Allele a	7	2
Allele A	93	98

Common variant GWA approaches are appropriate only for common variants

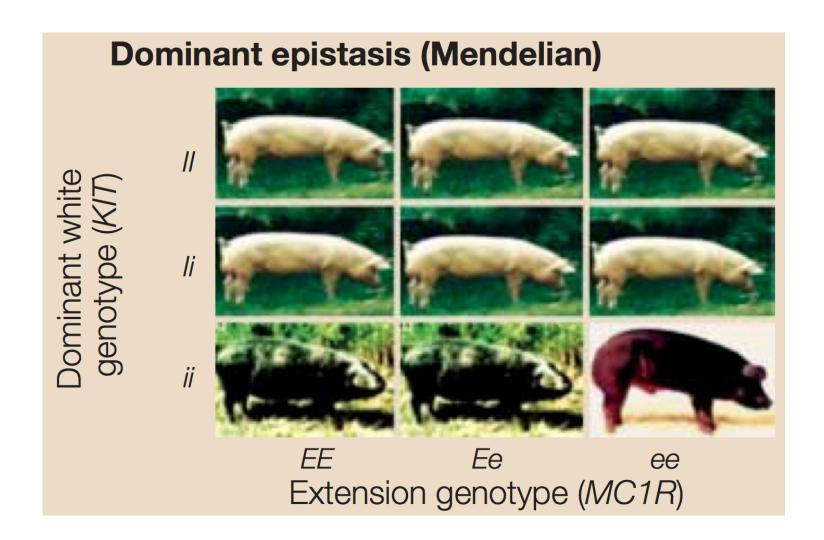
Feasibility of Identifying Disease Loci



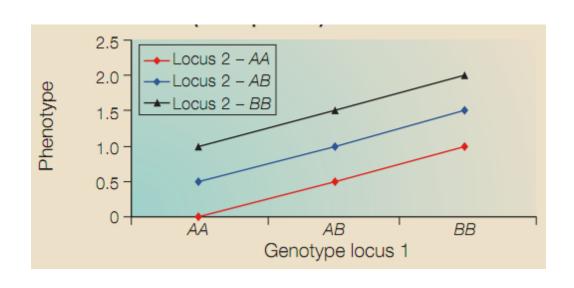
Epistasis

- Definition: The effect of one locus depends on the genotype of another locus
 - Epistatic effects vs. marginal effects

Epistasis for Mendelian Traits

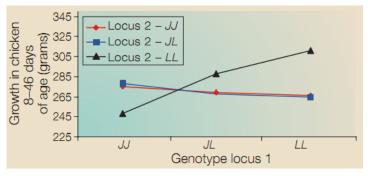


When There is No Epistasis

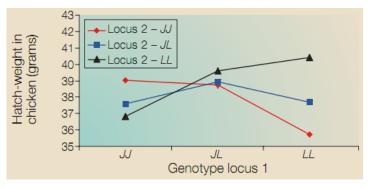


- Two additive (non-epistatic) loci
- The three lines run in parallel

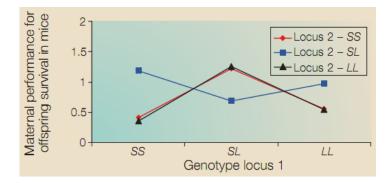
Epistasis Example



- Dominant epistasis
- One locus in a dominant way suppresses the allelic effects of a second locus

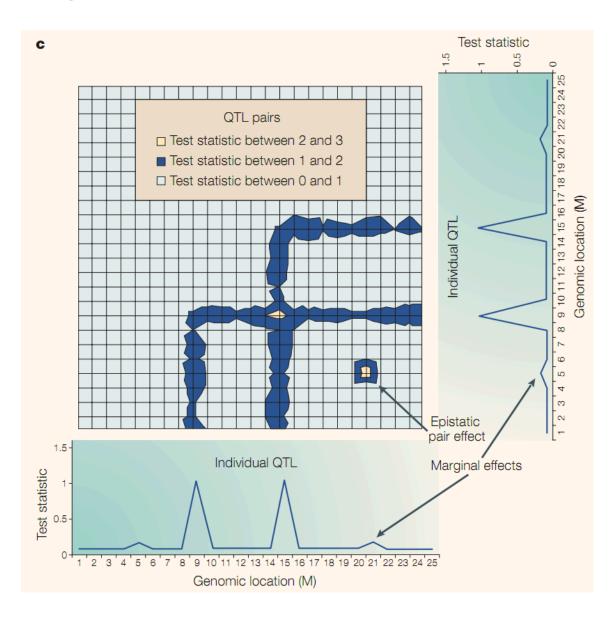


- Co-adaptive epistasis
- Genotypes that are homozygous for alleles of the two loci that originate from the same line (JJ with JJ, or LL with LL) show enhanced performance.
- Almost no marginal effects: average effect of JJ, JL, LL do not differ



- Dominance-by-dominance epistasis
- Double heterozygote (LS, LS) deviates from the phenotype that is expected from the phenotypes of the other heterozygotes.
- Double heterozygotes have a lower phenotype than expected.

Epistatic and Individual QTLs

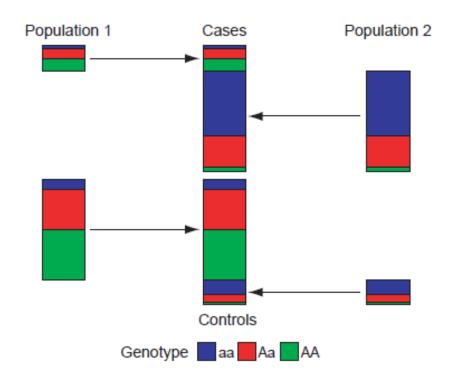


Detecting Epistasis

- Epistatic effects of SNPs can often be detected only if the interacting SNPs are considered jointly
 - The number of candidate SNP interactions is very large
 - For J SNPs, JxJ SNP pairs need to be considered for epistasis
 - In general for J SNPs and K-way interactions, there are $O(J^K)$ candidate interactions
 - Computationally expensive to consider all possible groups of interacting SNPs
 - For a reliable detection of *K*-way interactions, a large sample size is required
 - Multiple testing problem

Population Structure and Association Analysis

- Population structure in data causes false positives
 - Samples in the case population are usually more related
 - Any SNPs more prevalent in the case population will be found significantly associated with the trait.



Accounting for Population Structure in Association Analysis

- Needs to account for population structure in association mapping.
- Careful study design with each population represented in case/control groups in a balanced way.
 - Can be hard to control for population structure during data collection
 - The effect of cryptic population structure

Family-based Design vs. Population-based Design

Family-based studies

- The effect of population structure can be controlled by the use of parents' genotypes (e.g., Transmission disequilibrium test (TDT))
- In practice, collecting genotypes from multiple individuals in a family can be hard. (e.g., late-onset diseases)

Population-based design

- Data collection is easier for a large number of unrelated individuals than families.
- The control samples can be reused in different studies.

Accounting for Population Structure in Association Analysis

- Population-based method
 - Genomic control (Devlin & Roeder, Biometrics 1999)
 - Use the SNPs that are not associated with the trait to remove the effect of population stratification
 - Ignores admixture
 - Structured association (Pritchard et al., AJHG 2000)
 - First run STRUCTURE on genotype data. Within each subpopulation, an association between a genetic marker and the trait is a true association.
 - EigenStrat: principal component analysis (Price et al., Nature Genetics 2006)
 - First run PCA on genotype data to infer the population structure.
 Perform association analysis after correcting for the population effects in genotype/phenotype data
 - Linear mixed model (Lippert et al., Nature Methods 2011)
 - Model the population effects with random effects