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Overview

 How can we identify the genetic loci responsible for determining
phenotypes?

* Linkage analysis

Data are collected for family members

Difficult to collect data on a large number of families

Effective for rare diseases

Low resolution on the genomes due to only few recombinations
» a large region of linkage

e Genome-wide association studies

Data are collected for unrelated individuals
Easier to find a large number of affected individuals
Effective for common diseases, compared to family-based method

Relatively high resolution for pinpointing the locus linked to the
phenotype



Overview

 Statistical methods for testing genotype/phenotype
associations
» Discrete-valued phenotype: case/control study
* Continuous-valued phenotype: quantitative traits
* Sparse regression method for considering all of the SNP markers
* Multimarker association test

* |[ssues arising in GWAS
* Genotype imputation
* From common to rare variants
» Epistasis for multiple interacting loci
* Correcting for population structure



Population Genotype/Phenotype Data
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* 0 or 1 for case/control studies
* e.g., healthy/diabetic

* Real-valued phenotypes
* e.g., cholesterol level



Single SNP Association Test:
Case/Control Study

 For each marker locus, find the

3x2 contingency table containing .,
the counts of three genotypes _
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. XZ test with 2 df under the null

hypOthESlS of no association Genotype score = the number of minor alleles



Single SNP Association Analysis:
Case/Control Study

e Alternatively, assume the heterozygote risk is approximately
between the two homozygotes

 Form a 2x2 contingency table. Each individual contributes
twice from each of the two chromosomes.

Genotype

A Gcase,A GcontroI,A
a Gcase,a Gcontrol,a
Total 2XNcase 2XNcontrol

e X test with 1df



Manhattan Plot of p-values from Breast Cancer

GWAS

* Analysis of 582,886 SNPs for 3,659 cases with family history
and 4,897 controls
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Single SNP Association Test: Continuous-valued
Traits

e Continuous-valued traits
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Genetic Model for Association

Additive effect of minor allele, assuming effect size a for each minor
allele

— Major allele homozygote: 0
— Heterozygote: a
— Minor allele homozygote: 20

Generalizing additive genetic models for heterozygotes: a + a x k
— k=1: dominant effect of the minor allele
— k=0: no dominance
— k=-1: dominant effect of the major allele

Penetrance

— Proportions of individuals carrying a particular allele that possess an
associated trait

— Alleles with high penetrance are easier to detect



Correcting for Multiple Testing

 What happens when we scan the genome of 1 million genetic
markers for association with a = 0.05?

— 50,000 (=1 millionx0.05) SNPs are expected to be found significant just
by chance

— We need to be more conservative when we decide a given marker is
significantly associated with the trait.

e Correction methods

— Bonferroni correction
— Permutation test



Bonferroni Correction

* If N markers are tested, we correct the significance level as
o’'=a/N
— Assumes the N tests are independent, although this is not true
because of the linkage disequilibrium.
— Overly conservative for tightly linked markers



Permutation Procedure

* In order to generate the null distribution
— Step 1: Set Nsig=0
— Step 2: Repeat 1:Nperm

* Step 3a: Randomly permute the individuals in the phenotype data
to generate datasets with no association (retain the original
genotype)

e Step 3b: Find the test statistics Tperm of SNPs using the permuted
dataset

— T, ..., Tpper, form a null distribution

7 " Nperm

 Compute the test statistic T using the original dataset and test
with the above null distribution

This approach is computationally demanding because
often a large N is required.

perm



Vector/Matrix Representation

* Sparse regression method to evaluate the effect of each SNP in the context of
all other SNPs

y=Xp+e¢
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— Sparsity constraint: Only few SNPs are influencing the given phenotype
and the rest of the SNPs have effect size 0, no multiple-hypothesis-testing
problem



L1 Regularization (LASSO)

A convex relaxation.

Constrained Form Lagrangian Form

B =argming|Y - Xg|I> B = argming|[Y — X8| + A 8]
subject to:

p
> 1Bl <cC
j=1

 Still enforces sparsity!




Lasso for Reducing False Positives
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Many zero associations (sparse results)

Tibshirani, Journal of Royal Statistical Society 1996
Wu et al., Bioinformatics 2009



Multi-marker (Haplotype) Association Test

Idea: a haplotype of multiple SNPs is a better proxy for a true
causal SNP than a single SNP

Form a new allele by combining multiple SNPs for a haplotype

SNPA SNPB Auxiliary Markers for Haplotypes
0 0 —> 1 0 0 O
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Test the haplotype allele for association



Multi-marker Association Test

* Multi-marker approach can capture dependencies across
multiple markers
— SNPs in LD form a haplotype that can be tested as a single allele
— Can achieve the higher power

 Haplotypes are more powerful discriminators between cases and
controls in disease association studies

* Challenge as the size of haplotype increases

— Haplotype of K SNPs results in 2X different haplotypes, but the number
of samples corresponding to each haplotype decreases quickly as we
increase K

— Large K requires a large sample size



Overview

 Statistical methods for testing genotype/phenotype
associations
» Discrete-valued phenotype: case/control study
* Continuous-valued phenotype: quantitative traits
* Sparse regression method for considering all of the SNP markers
* Multimarker association test

* [ssues arising in GWAS
* Genotype imputation
* From common to rare variants
» Epistasis for multiple interacting loci
* Correcting for population structure



Causal Mutations and Genetic Markers

With SNP array data:

Unknown
Causal Known (genotyped)

Mutation SNP Marker

*

4=

Linkage
Disequilibrium

* What happens when SNP density increases?
* Fine mapping required to locate the causal mutation
* What happens with whole genome sequencing data?



Increasing SNP Density via Genotype
Imputation

Reference data “ d Reference data: dense SNP
L data from HapMap I, or
1000 genome project
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the reference data (leverage
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Genotype Imputation

Reference set of haplotypes, for example, HapMap
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Genotype data with missing data at Each sample is phased and the haplotypes The reference haplotypes are used to
untyped SNPs (grey question marks) are modelled as a mosaic of those in the impute alleles into the samples to create
haplotype reference panel imputed genotypes (orange)
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PHASE can be used for imputation!



Imputation-Based Methods

(Servin & Stephens, 2007)
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Common Variants vs. Rare Variants

First-generation genome-wide association study (GWAS):
common variant common disease hypothesis

Common variants with minor allele frequency (MAF)>5%
— dbGap: ~11 million SNPs
— HapMap: 3.5 million SNPs

— A successful GWAS requires a more complete catalogue of genetic
variations

Rare variants (MAF<0.5%), low-frequency variants (MAF:0.5%~5%)
— Captured by sequencing with next-generation sequencing technology
— Possibly significant contributors to the genetic architecture of disease
* Causal variants are subject to negative selection



Associations to Rare Variants

Often GWA studies are underpowered for functional rare
variants

Common Variant Association Rare Variant Association
- -

Allele a 60 Allele a 7

Allele A 40 80 Allele A 93 98

Common variant GWA approaches are appropriate only for
common variants



Feasibility of Identifying Disease Loci

Effect size
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Epistasis

* Definition: The effect of one locus depends on the genotype
of another locus

— Epistatic effects vs. marginal effects



Epistasis for Mendelian Traits

Dominant epistasis (Mendelian)
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Carlborg & Haley, Nature Reviews Genetics 2004
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When There is No Epistasis
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* Dominant epistasis

* Onelocus in a dominant way suppresses
the allelic effects of a second locus
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. Co-adaptive epistasis

. Genotypes that are homozygous for alleles of the
two loci that originate from the same line (JJ with
JJ, or LL with LL) show enhanced performance.

. Almost no marginal effects: average effect of JJ,
JL, LL do not differ
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Dominance-by-dominance epistasis

. Double heterozygote (LS, LS) deviates
from the phenotype that is expected
from the phenotypes of the other

heterozygotes.

. Double heterozygotes have a lower
phenotype than expected.



Test statistic

Epistatic and Individual QTLs
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Detecting Epistasis

* Epistatic effects of SNPs can often be detected only if the
interacting SNPs are considered jointly
— The number of candidate SNP interactions is very large
* For J SNPs, JxJ SNP pairs need to be considered for epistasis

* |In general for J SNPs and K-way interactions, there are O(JX)
candidate interactions

 Computationally expensive to consider all possible groups of
interacting SNPs

* For a reliable detection of K-way interactions, a large sample size is
required

— Multiple testing problem



Population Structure and Association Analysis

* Population structure in data causes false positives
— Samples in the case population are usually more related

— Any SNPs more prevalent in the case population will be found
significantly associated with the trait.

Population 1 Cases Population 2
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Accounting for Population Structure in
Association Analysis

Needs to account for population structure in association
mapping.

Careful study design with each population represented in
case/control groups in a balanced way.
— Can be hard to control for population structure during data collection

— The effect of cryptic population structure



Family-based Design vs. Population-based
Design

* Family-based studies

— The effect of population structure can be controlled by the use of
parents’ genotypes (e.g., Transmission disequilibrium test (TDT))

— In practice, collecting genotypes from multiple individuals in a family
can be hard. (e.g., late-onset diseases)

* Population-based design

— Data collection is easier for a large number of unrelated individuals
than families.

— The control samples can be reused in different studies.



Accounting for Population Structure in
Association Analysis

* Population-based method
— Genomic control (Devlin & Roeder, Biometrics 1999)

* Use the SNPs that are not associated with the trait to remove the
effect of population stratification

* lgnores admixture
— Structured association (Pritchard et al., AJHG 2000)

* First run STRUCTURE on genotype data. Within each subpopulation,
an association between a genetic marker and the trait is a true
association.

— EigenStrat: principal component analysis (Price et al., Nature Genetics
2006)

* First run PCA on genotype data to infer the population structure.
Perform association analysis after correcting for the population effects
in genotype/phenotype data

— Linear mixed model (Lippert et al., Nature Methods 2011)
* Model the population effects with random effects



