Computational Genomics

MSCBIO 2070

microRNAs:
deux ou trois choses que je sais d'elle

Reading: handouts & papers




miRNA genes: a couple of things we | 2::
know about them

Size c TR _,c Ll
e 60-80bp pre-miRNA

‘DGCRS
e 20-24 nucleotides mature miRNA / Ejj

e Role: translation regulation, cancer

Pol Il Tral of pri-miRNA
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e Location: intergenic or intronic CQD L SM
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e Regulation: pol IT (mostly)
e They were discovered as part P
of RNAi gene silencing studies \
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microRNA mechanisms of action

e Translational inhibition in
e Cap-40S initiation
e 60S Ribosomal unit joining
e Protein elongation
e Premature ribosome drop of f
e Co-translational protein degradation

- mRNA and ir‘o‘rein deir'ada‘rion

e Protein degradation
e Sequestration in P-bodies

e Transcriptional inhibition
e (through chromatin reorganization)

smaII ribosomal unit

3

large ribosomal
subunit

mlcroRNA and RISC

RISC
mlRNA

mature
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nascent

peptlf |
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What is RNA interference (RNAi) ?

e RNAI is a cellular process by which the expression of genes is
regulated at the mRNA level

e RNAI appeared under different names, until people realized it
was the same process:

e Co-supression
e Post-transcriptional gene silencing (PTGS)

e Quelling
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Timeline for RNAi Dicsoveries :
1968 1990 1995 2001
Francis Crick and Leslie Botanical researchers Guo and Kemphues Tom Tuschl's group at the
Orgel proposed that RNA working with petunias discovered that dsRNA Max Planck Institute of
was the first information discovered gene could lead to gene Biophysical Chemistry
molecule. silencing. silencing while working discovered that siRNA
on C. elegans. molecules cause

gene-specific silencing
in mammalian cells.

1970 1990

1972 1990-1992 1998
Harry Noller proposed the role The Human Genome Project Andy Fire and Craig Mello
of rRNA in translation of was initiated and sequence coined the term RNAI for the
mRNA into protein molecules information began to gene silencing mechanism
increase exponentially. performed by dsRNA

molecules in worms.

Bob Crimi
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From petunias to worms

In the early 90's scientists tried to darken petunia’s color by
overexpressing the chalcone synthetase gene.

e The result: Suppressed action of

/ chalcone synthetase

In 1995, Guo and Kemphues used anti-sense RNA to C. elegans par-1
gene to show they have cloned the correct gene.

e Both sense and anti-sense par-1 gene produced the same (mutant)
phenotype. (Hmm! Hmmm! Hmmm!)

Similar phenomena observed in fungus N. crassa and plant viruses

e The phenomenon was shown to be post-transcriptional, but the mechanism
remained unknown
© 2013-2016 Benos - Univ Pittsburgh 6




From petunias to worms (cntd)

In 1998, Andy Fire and Craig Mello published something revolutionary.

RNA interference
— gene silencing by double-stranded RNA

1. The central dogma

et Transcription

o, Owr gonoma operates by sending

™ 8 Information {rom double-stranded
oo D.o“"" DNA In the nuclous, via single-
> strancied MANA, 10 guice the synthesls

. of peoteins in the cyloplasm.

2. The experiment

RNA carrying the code for a muscle protein is injected

Into the worm C. elegans. Single-stranded RNA has

no effect. But when double-stranded RNA is injected,

the worm starts twitching in a simiar way to worms |
carrying a defective gene for the muscle protein.

Sense RNA Antisense RNA Double-stranded RNA

Twitching

The Nobel Prize in Physiology or Medicine 2006
Andrew Z. Fire, Craig C. Mello

The Nobel Prize in Physiology or Medicine 2006
Nobel Prize Award Ceremony

Andrew Z. Fire

Craig C. Mello

Photo: L { Phot: Mott:
Andrew Z. Fire Craig C. Mello
The Nobel Prize in Physiology or Medicine 2006 was awarded jointly to Andrew Z.

Fire and Craig C. Mello "for their discovery of RNA interference - gene silencing by
double-stranded RNA"

Photos: Copyright @ The Nobel Foundation
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Plot thickens... the discovery of microRNAs | 22¢
(miRNAS)

lin-4 microRNA in worms (Ambros & Ruvkun ‘93)
e Non-coding, 22nt RNA

e lin-4 binds to sites in lin-14 3'UTR and
negatively regulates lin-14 translation

e Not conserved outside the worm phyla
e Yeah of course: Strange worms, right?

Victor Ambros Ph.D. Gary Ruvkun Ph.D.
University of Massachusetis Harvard Medical Schoo

Medical School Mass. General Hospital

siRNAs/miRNAs in plants (Baulcombe '99)

Second miRNA - let-7 (Ruvkun '00)
e Non coding, 21nt RNA
e Highly Conserved
e Regulates lin-14 in same way as lin-4

David Baulcombe

University of Cambridge

—

LRI O DEERVIET 5008 Albert Lasker Award




What is the difference between °
miRNA and siRNA?

Function of both species is requlation of gene expression
Difference is in where they originate
siRNA originates with dsRNA

siRNA is most commonly a response to foreign RNA (usually
viral) and is often 100% complementary to the target

e miRNA originates with ssSRNA that forms a hairpin secondary
structure

e mMiRNA regulates post-transcriptional gene expression and is
often not 100% complementary to the target

© 2013-2016 Benos - Univ Pittsburgh 9




microRNAs? e

» RNA can fold like proteins:
possess primary, secondary and
tertiary structure 3

—rs %
>,°

B sl ssssnnnecdiessnsdbee:

» Secondary hairpin structure

crucial to processing of small
RNAs

MIiRNA*

W»»»—W»ﬁW)
mMiRNA
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% MiRNA Entry for MI00000... & | | (Untitled) )@

miRBase

Home J| Search j| Browse [ Genomics || Help §| Download Submit § hsa-mir-16-1

— miRBase has moved to http://www.mirbase.org/ - please update your links.

Stem-loop sequence MI0000070

=SS0 MIO000070
VM hsa-mir-16-1
SN HGNC:MIR16-1

(Yo g |l Homo sapiens miR-16-1 stem-loop

ag c - a c u gauu
gucagc ugc uuagcagcac gu aauauugg ¢ uaa c
10 U U U U O O I O
caguug aug agucgucgug Ca uuaugacc C auu u
ga a 2 a uu aaaa

:

Human miR-16 has been cloned by independent groups [1,2]. This precursor sequence maps to chromosome 13, and was namn
reported 2 identical chromosome 13 loci, which appear to map to the same locus in subsequent genome assemblies. This gene
region has been shown to be deleted in more than half of B cell chronic lymphocytic leukemias (CLL). Both miR-15a and miR-1i
CLL cases [3]. A second putative mir-16 hairpin precursor is located on chromosome 3 (MIO000738 ).

Comments

Coordinates (GRCh37) Overlapping transcripts

13: 50623109-50623197 [-] sense OTTHUMTO00000044954; DLEU2-001; intron 3
OTTHUMTO00000044957; DLEU2-004; intron 4
OTTHUMTO00000044960; DLEU2-007; intron 4
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Conservation across species of the

second miRNA, let-7
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miRNA genes: a couple of things we | 2::
know about them

Size
e 60-80bp pre-miRNA

‘DGCRS
e 20-24 nucleotides mature miRNA / Ejj

e Role: translation regulation, cancer

d|09n05|5 | I NUCLEUS/

e Location: intergenic or intronic CED < iy T S

. ‘qs/‘l’RBl’Doer
e Regulation: pol IT (mostly) e
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miRNA method of action

a
5 cap+ .
binding complex Active .
translation
g Ribosome
Poly(A) tail +

binding proteins

o

v

Gp
N S

P
:, Prevention of 14

ribosomal initiation




miRNA pathway

Nucleus Cytoplasm

Bidirectional transcription, RNA-dependent

Erdeeiiilin e RNA polymerase action etc.
Pre- \ + K
mlRNA dsRNA
D

mMiRNA/MiRNA™

duplex m]unc]t
—r DROSHA

Pri-miRNA
\ PASHA
v v

= Translational mRNA
Capped pre-mRNA Repression Cleavage

siRNA
duplex

Polyadenylation,
splicing, export

mRNA Storage mRNA degradation
DCP [} “llll
XR

Ribosomes

U

Translating mRNA

Incorrectly spliced or
otherwise ,aberrant RNA
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Summary of Players

e Drosha and Pasha are part of the “Microprocessor” protein
complex (~600-650kDa)

e Drosha and Dicer are RNase ITII enzymes
e Pasha is a dsRNA binding protein

e Exportin5 is a member of the karyopherin nucleocytoplasmic
transport factors that requires Ran and GTP

e Argonautes are RNase H enzymes

© 2013-2016 Benos - Univ Pittsburgh 16
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A. RNase lll type proteins
Kiinanbresha 3 P-rich IRS-rich: RIlIDa RIIIDb dsRBD 1374 aa

— DEAD Helicase DUF283 % :RIIIDa IElme ICd)s-RBD 1922 aa
B. Argonaute proteins

human Ago2 EaC il 859 aa
C. dsRNA-binding proteins

human DGCR8 "éw dSR:BD ds:RBD 773 aa

Drosophila R2D2  9SRBD dsRBD 311 aa
D. DEAD-box helicases

Drosophila Armitage Helicaee 1274 aa

© 2013-2016 Benos - Univ Pittsburgh 17



miRNA function: few examples

C. elegans

Drosophila

Mouse

miRNA Target genes Function
lin-4 lin-14, lin-28 Early Developmental timing
let-7 lin-41, hbl-1, daf-12, | Late Developmental timing
Isy-6 cogl L/R neuronal symmetry
miR-273 | die-1
Bantam hid Programmed cell death
miR-196 | Hoxb8 Developmental patterning
miR-1 Hand2 Cardiomyocyte differentiation &

proliferation 5




miRNA computational 4
predictions

chrig: I 400]

13808500] 13508600] 13565760 13505500
sTS Markers on Genehc (hlue) and Radiation Hubrid (black) Maps
. ° . STS Markers
R A d T UCSC Gene Predictions Based on RefSeq, UniFrot, GenBank, and Comparative Genomics
e mi ene predicrtion
RefSeq Genes

e miRNA features g gttt

hsa-mir-27a

NRNAS
snoRNABase and miRBase

Human mRNAS from GenBank
Human mRNAS I
Human ESTs That Have Been Spliced
. . Spliced ESTs
. Gene p r|ed l C-‘- l O n me-r ho ds vertebrate MUltiz Alignment & Conservation (17 Species)
= [T II-.

S ‘.
I [ -1
t IIIlIII ] IIIIIIIII LT

dog I NN | AN -
armadillo
elephant W 1 N
ol

e miRNA target prediction R

Simple Nucleotide Folumorphisms (db3NF build 126)
SNPs (126)

e Physical characteristics
e Target prediction methods

21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

| 11 ]
3' part mismatch sensitive 5' region
tolerates up to 4 mis- max. 1 mismatch
matches, but not more
than 2 in a row (I .

cleavage site
" no mismatch |

high overall free energy (z70% of perfect match)
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Computational methods to identify o
miRNA genes: Why?

» 800-1,000 human miRNA genes to date, thousands across
species.

» However, experimental identification miRNAs is not easy:
» low expression
» stability
» tissue specific
» Expensive, and long cloning procedure

o Predicting miRNAs from genomic sequences provide a valuable
alternative/support to cloning.

© 2013-2016 Benos - Univ Pittsburgh 20




In the beginning, miRNA genes were | 2::
identified... :

e Inthelab

e Forward genetics: start from the mutant phenotype and look for the
responsible gene

Very slow, inefficient (can only be applied to certain cases)
e cDNA sequencing: size-fractionate RNA, clone, sequence
Slow, expensive
e Deep sequencing of small RNAs (e.g., 454, Solexa)
Expensive, we do not know how many small RNA flavors exist

e In silico methods
Conservation-based

Clustering
SVMs

© 2013-2016 Benos - Univ Pittsburgh 21




miRNA gene prediction

» Computational prediction

Structural features (e.g., hairpin length, thermodynamic stability,
etc)

Sequence features (e.g., nucleotide content, location, etc)

Evolutionary conservation

* Methodologies
Neighbor stem loop searches (identify closely located stem loops)
Gene-finding (identify conserved genomic regions, then run MFold)
Homology search (direct BLAST searches)

©® 2013-2016 Benos - Univ Pittsburgh 22




miRNA gene prediction (cntd)

* Programs

» miRseeker (Lai et al. 2003): assesses folding patterns of RNA
sequences conserved between two Drosophila species

« MiRscan (Lim et al. 2003): uses RNAFold to find hairpin
structures in evolutionary conserved sequences (in worms)

* Berezikov et al. (2005): uses phylogenetic shadowing together
with other properties to identify miRNA genes

» BayesmiRNAfind (Yousef et al. (2006): uses Naive Bayes
classifier with multi-species information

e Kadri et al. (2009): uses hierarchical HMM with no evolutionary
information

© 2013-2016 Benos - Univ Pittsburgh 23




miRNA prediction - Initial methods

. A 3'AAAALJU
N\IRSCGH - u

find conserved hairpin structures in miRNAs Ao ac”

. f=freq. of feature in miRNA 1= A

A X training data set (50 miRs); E——

S.(x;) =log, Lx) ; N | @
g (X) g= Similar freq. in random I

: (~36K random hairpins)

7 miRNA base

pairing (6.7) Co)
S = E S.(x;)
= Ve

3' conservation
(1.9)

§' conservation
(2.2)

Initial pentamer
(0.7)

L’JCO—GU
Lim et al, Genes and Development 2003 LY Disance from
o= pop (0.6
s U
G AA ==
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miRScan

MiRscan

e 81 of 109 (at that time) known miRNAs identified by de novo approach

alone

r-luman genome A
(109/109)

lign (BLAT annotations),
Remove protein-coding genes

| Mouse genome I/

188 miBNA gene
candidates
with scores > 10.0
(81/109)

MiRscan analysis

<€

Noncodin 800,000
regions > stem-loops
(102/109) (102/109)
MiRscan analysis,
Retain top 10%
80,000
conserved
m Align stem-loops
stem-loops | <€ (102/109)
(91/109)

| Fugu genome |

Note: Sequence conservation patterns in other related genomes are

- Comparative genomics

© 2013-2016 Benos - Univ Pittsburgh
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miRNA biogenesis: stemloops
Protein-coding gene D Q -~ p O
Pol Il Transcription A Q
AAG Cec o AUU
s AN Botoes e
I U O 1 1 0 O
A c GAUAGUUU GGAGUGG  UGUGGACUUA
A pA GCC
[T 'MMMIMMMMMMM NNNMMMMMMMMMM

C}nﬂ M - Match
NUCLEUS N - Mismatch
/  Extension | - Insertion/
? CYTOPLASM Deletion
oty RNATIRVA” ikl
‘qs/‘l’RB D r’ ,, M
_ I o F
/v
TITTTTT T g TOTIT TITITTIT Millar AA, Waterhouse PM (2005) Funct Integr Genomics 5:129-135
| SRR
€D mscasn
m_m_(\m“ Perfect Complementarity
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Stemloop characteristics (species)

GA

A Cc

c C
CUAUCAAA UCUCGCC
I 0 O e o R

>0>

C
‘AAAC

GAUAGUUU GGAGUGG

AUU

ACAUUUGGAU
AN

UGUGGACUUA
GCC

i - yvvvvMMMIMMMMMMM NNNMMMMMMMMMM

M - Match
N - Mismatch

| - Insertion/
Deletion

Mean (SD)

Vertebrates
Invertebrates
Plants

Min - Max

Vertebrates
Invertebrates
Plants

Hairpin Loop Extension miRNA  Pri-miR ext
(bases) (bases) (bp mostly)  (bp mostly) (bp mostly)
86.7(13.8) | 73(35) | 5.0 (34)]|220(0.9) 126(7.0)
918(131) | 79(39) | 58 (45)|22.2(1.3) 13.8(5.9)
1195 (43.2) | 6.8(3.7) | 22.8 (18.5) | 21.3 (1.0) 12.5 (9.9)
—
55 - 153 3-22 0- 34 16 - 26 0-50
54 - 215 3-30 O0- 55 18 - 28 0-32
57 - 337 3-35 0 -102 16 - 24 0-78
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HMM example: e

the dishonest casino

0.95 /7
1: 1/6

: 1/6
: 1/6
: 1/6
: 1/6
: 1/6

Fair

0.9 Classification Problem
m Given the model, parameters

- 1/10 and a set of observations
can we determine if they
2: 1/10 come from the fair or the
0.05 - loaded dice?
<= |4 110 3
|5 1/10 g /\ /\ A
6: 1/2
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Hierarchical hidden Markov models
q,
* Internal States
e Production States q, q, q; q.
e End States
° Parameter Set 7\‘ QI QZ Qe QI QZ Qe

Fine et al., 1998; Machine Learning, 32, 41-62
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Hierarchical hidden Markov models

e [Internal States
 Production States q, q,

* End States
3 3 3 3 3 3
® Parameter Set 7\‘ QI QZ Qe QI QZ Qe

Fine et al., 1998; Machine Learning, 32, 41-62
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Hierarchical hidden Markov models

q,
* Internal States

* Production States g, q, q,

e End States

e Parameter Set A q, q.

Fine et al., 1998; Machine Learning, 32, 41-62
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Hierarchical hidden Markov models
G )
e Internal States
e Production States q, q, q, (kf )
e End States
3 3 ’ 3\‘ 3 J 3\‘
e Parameter Set A 4 1> ‘e 9 1 Ntes

Fine et al., 1998; Machine Learning, 32, 41-62
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Hierarchical hidden Markov models

* Internal States

* Production States q,
e End States

e Parameter Set A (4 ) (%

Fine et al., 1998; Machine Learning, 32, 41-62
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HHMMIR model based on miRNA -
stemloop characteristics

GA

a e c AUU
c A e A
] e 1 1 O 1 4
B, & UUU GGAGUGG  UGUGGACUUA
A pA GCC
IO MMMIMMMMMMM NNNMMMMMMMMMM

M - Match
N - Mismatch

| - Insertion/
Deletion

|

Extension Bl
extension
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Datasets

e Positive examples
e mMiRNA registry version 10.1 (December, 2007)

GA
g g c AUU
G c AAA UCUCGCC ACAUUUGGAU
I I A 1l O 1| A e |
Ac o GAUAGUUU GGAGUGG  UGUGGACUUA
A pA GCC
I AviMvvMMMMIMMMMMMM NNNMMMMMMMMMM
{ M - Match
A N N - Mismatch
e Extension | @ | - Insertion/
" Y, Deletion

CCAUAUAGUGUUAAGUUUAGUGGUAGUUUAUUCCAAAUCUUUGGAGCG
GCGCAAGUAAAAGCACAAUUUUGUGUGAGGUAGUUGUAGAAGUAGCUU
GUCUAAUGUACUUCGCAAGGUAUGUGGAUGCGAUUUAAGAAAUAUUAAG
AAAGACAAAUAAUUUGGGGCUUGACCAUUCAAUGCCUUGUGAACAAGCA
AAAGUAUUUUGAAUUAAAUUCUCUGCUUCAUUGGCAACCAACGUAACUU
UUUAAAAACAGGUUUAAUAUUGUGAGAUUUUGAGGCAAUAUUGGACACAA
GUCUUGCACAAUCAUUUUGAACAUCCUGCAACCUGGUUAUUUGUGAAUCU
GGCAAGCCAAACAAUAACCAUUACAAUAAUCAAGCCUACUGCUAAUAU

Genome folding

Hairpin Extraction

O fo=>
ccﬁego >Peg,
CC°>0,69>>OC Q
a o
n“’ﬁ%zgm%%cc
Cho6g Peoo®
[Pt ;’goceome>
> @reon &
o>

Pre-processing

>mir-xyz
GCAAGCCCAUGAAGAAGAGUAAGAAUAGAGGAAAGGAGAAGGAUGAGAGACAGG
----CC----UUUCUUGUC-UUCUU~--CUUCUUUCCCCUCUCUUC-CUCAUAUC

, , AND
miR-Mapping & . . ...
Labe | | ng GCAAGCCCAUGAAGAAGAGUAAGAAUAGAGGAAAGGAGAAGGAUGAGAGACAGG
—----CC----UUUCUUGUC-UUCUU~--CUUCUUUCCCCUCUCUUC-CUCAUAUC

ini LLLLEEEEEEEEEEERRRRRRRRRRRRRRRRRRRRRRRPPPPPPPPPPPPPPPP
(For training only)
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Datasets

e Positive examples
e mMiRNA registry version 10.1 (December, 2007)

e Negative examples
e Folded hairpins derived from coding regions

e Alphabet
e Match: M = {AU, GC, GU}
e Mismatch: N = {AG, AC, CU, AA, CC, GG, UU}
e Indel: I={A-, C-, G-, U-}
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Parameter estimation: 0o

Baum-Welch vs. MLE S

Sn (SD) FDR (SD)

Baum-Welch 0.84 (0.19) 0.12 (0.06)
MLE 0.74 (0.14) 0.16 (0.08)

Baum Welch ROC curve

1.2 \
1 \ P— —

0.8
0.6

MLE

True positive rate (Sensitivity)

0.2

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
False positive rate (1- specificity)
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Performance of HHMMIR across ooo
species (trained on human data)

Organism Known hairpins % predicted

& & —> M musculus 422 74.7

—> 6. gallus 147 85.1

\‘ —> D. rerio 334 88.3

—> C elegans 131 85.5

s D. melanogaster 143 93.0

‘:1’: s A. thaliana 114 97.4

N O. sativa 188 85.7
g/ Total 1.479 85.1
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Comparison of HHMMIR to 44
tripletSVM .

Known hairpins  tripletSVM (%) HHMMIR (%)

(at the time)

New human hairpins in registry at the time 39 92.3 97.4
M. musculus 36 94.4 88.9
R. norvegicus 25 80.0 84.0
G. gallus 13 84.6 100
D. rerio 6 66.7 100
C. elegans 110 86.4 90.9
C. briggsae 73 95.9 95.9
D. melanogaster 71 91.6 95.8
D. pseudoobscura 71 90.1 98.6
A. thaliana 75 92.0 97.3
O. sativa 96 94.8 86.5
Epstein Barr virus 5 100 80.0

TOTAL 620 91 93.2
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To summarize...

Ab initio miRNA stemloop prediction

e The fundamental miRNA characteristics are similar between very
diverse taxa (vertebrates, invertebrates, plants)

e HHMMIR: first HMM-based approach for classification of microRNA
precursors

e HHMIR classifies known miRNA genes from distant species with high
accuracy

e HHMMIR uses structural and sequence characteristics of distinct regions
of the miRNA precursors
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miRDeep: taking advantage of °
sequence read number

Nature Biotechnology 26, 407 - 415 (2008)
doi:10.1038/nbt1394

Discovering microRNAs from deep sequencing data using
miRDeep

Marc R Friedlénderl, Wei Cheng, Catherine Adamidil, Jonas Maaskolal, Ralf
Einspanierg, Signe Knespell & Nikolaus RajewskyL

The capacity of highly parallel sequencing technologies to detect small
RNAs at unprecedented depth suggests their value in systematically
identifying microRNAs (miRNAs). However, the identification of
miRNAs from the large pool of sequenced transcripts from a single
deep sequencing run remains a major challenge. Here, we present an
algorithm, miRDeep, which uses a probabilistic model of miRNA
biogenesis to score compatibility of the position and frequency of
sequenced RNA with the secondary structure of the miRNA precursor.
We demonstrate its accuracy and robustness using published
Caenorhabditis elegans data and data we generated by deep
sequencing human and dog RNAs. miRDeep reports altogether ~230
previously unannotated miRNAs, of which four novel C. elegans
miRNAs are validated by northern blot analysis.
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miRDeep: the idea

a Sequencing reads

miRNA Mature
precursor miRNA Loop

—> D )

Star sequence

Dicer cleavage Deep sequencing

Non-miRNA products
Sequencing reads

O

Non-miRNA

h
local hairpin \ \
Non-Dicer processing Deep sequencing
or degradation
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miRDeep:
the pipeline
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miRDeep: some results

d = Total known nematode miRNAs b = Nematode known and novel miRNAs € m Nematode novel miRNAs
Present in the deep sequencing data False positives False positives
150 Recovered by miRDeep 140 20
120 -
100 100
emarode 80 10
60
50 40 5 I
20
0 0 = 0
d mTotal known human miRNAs € = Human known and novel miRNAs f m Human novel miRNAs
Present in the deep sequencing data " False positives » False positives
600 Recovered by miRDeep 200 y
500 12
Human o . 0
300 100 g
200
50 4
100 2
0 0 = 0
g ¥ Total known dog miRNAs h ® Dog known and novel miRNAs I = Dog novel miRNAs

Present in the deep sequencing data | False positives False positives
Recovered by miRDeep

6 200 200
5
D O B 150 150
9 3 100 100
2
) 50 50
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miRNA target prediction

Size
e 60-80bp pre-miRNA
e 20-24 nucleotides mature miRNA

e Role: translation regulation, cancer
diagnosis

e Location: intergenic or intronic

e Regulation: pol IT (mostly)

© 2013-2016 Benos - Univ Pitt
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miRNA target prediction

» Physical characteristics
5" end “seed” conservation (6-8 nt long)
Compensatory 3’ end (to increase miRNA stability/efficiency)

Multiple target sites: are they important to have?

Structure of the target sequence

21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

| I 1 |
3' part mismatch sensitive 5' region
tolerates up to 4 mis- max. 1 mismatch

matches, but not more | |

than 2 in a row .
cleavage site

no mismatch |

high overall free energy (270% of perfect match)
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miRNA target prediction (cntd)

* Programs

» Stark et al. (2003): detecting base complementarity on the

5" -end 8 nt seed w/ evolutionary conservation = MFold to
calculate stability

« RNAHybrid (Rehmsmeer et al. 2004): new RNA folding
algorithm; uses only 6 nt at the 5’ -end seed (nts 2-7)

* TargetScan (Lewis et al. 2003, 2005): uses only 7 nt at the
5" -end seed — RNAFold to calculate binding energy

* DIANA-MicroT (Kyriakidou et al. 2004): focuses on single
target sites; seeks targets w/ central “bulge” and 3’
complement
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miRNA target prediction (cntd)

* Programs (cntd)

e miRanda (Enright et al. 2005): uses weight matrices to

emphasize 5" -end binding — RNAFold to calculate binding
energy

* Xie et al. (2005): whole genome conservation scan identified a
large class of 8 nt motifs (not a formal miRNA finder)

* rna22 (Miranda et al. 2006): seeks overrepresented motifs in

3" UTR of the genes — Vienna package to calculate binding
energy
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rna22: a different strategy

~

Start: 644 mature miRNA sequences
(2004 version of RFAM)

End: 354 sequences with <90%
identity (training seft)

Input
Preparation
A

e W6

Pattern identification: Teiresias (on
the training set)

Pattern
Discovery
SN

Significance: compare to a 2nd order
Markov from the genome

E.g.. [AT][CGL.TTTTT[CGIG..[AT]
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entries from the set of mature
sequences in the RFAM database

l

E)rocess remaining sequence set to find}

{ remove duplicate and near-identical J

intra-and inter-species patterns of
conserved sequence features

filter discovered patterns keeping
only statistically significant ones
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rna22 (cntd) S
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e Target islands: “hot spots” with 230 _3 of statistically significant patterns
. . . e p. . c d locate their inst i
statistically significant mature miRNA gg e farget UTRS.
patterns £8 <
§E v
= S [identi_fy “target islands” supporteq byJ
e Results: rna22 identifies correctly y e

17/21 “new” full-length sites

v

pair-up each target island with
each candidate microRNA

identify & report
microRNA/target-island partners

whose interaction satisfies
user-specified thresholds

Assignment of microRNAs
to target islands
A

4

experimentally evaluate selected
microRNA/target-island interactions
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rna22 (cn
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rna22: results (cntd)

Table 2. Rna22's Estimates of the Number of MicroRNA Precursors for the Worm, Fruit Fly, Mouse, and Human

Genomes
Total Number of
MicroRNA Pracursors
Numbar of MicroRNA Detacted by ma22 Estimatad Error whaen
Number of MicroRNA Precursors that ncluding Already Predicting MicroRNA
Precursors Contained Are in the Training Known Ones Precursors
in the Used Training Set and Can Be < «25 Kcal/mel < ~25 Kcalimol
Genome Set Detected by ma22 (< «18 Kcal/mal) (< ~*8 Kcal/maol)
C. alogans 106 78 (73.6%) 358 (745) <1% (<2%)
0. medanogaster 78 62 (79.5%) 654 {1,236) 1% (=2%)
M. muscwis 202 165 (81.7%) »>25,000 {>£4 000) <1% (<2%)
H. saplans 176 154 (87.5%) =25,000 {=55,000) =1% (=2%)

Rasults are reportad for two folding energy cutofls: —25 Keal/mol and — 18 Keal/imol.

©® 2013-2016 Benos - Univ Pittsburgh

53



rna22: evaluation

e Advantages
e Predicts miRNA target genes w/o knowledge of the miRNA gene
e No need for evolutionary conservation

e Performs better when miRNA genes have multiple targets in the
same mRNA

e Disadvantages

e No consideration of the miRNA constrains per se (e.g., b’
“Seed”)

e May miss target genes with one or few target sequences in their
3" UTR
e Number of false positives cannot be estimated
_ o Heuristics
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Predicting miRNA targets: not so easy!..
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mRNA cleavage
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Tool Features

Sequence binding, thermodynamics-
based miRNA-mRNA duplex prediction
and comparative sequence analysis

miRanda

PITA Also thermodynamics-based method; it

considers the mRNA secondary
structure in determining the miRNA-
target accesibility.

Thermodynamics-based miRNA-mRNA
duplex prediction and comparative
sequence analysis. Focus on seed region.

TargetScan

mirSVR™ Based on regression method for

predicting likelihood of target mRNA
down-regulation from sequence and
structure features in microRNA/mRNA
predicted target sites.
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The Drosophila AGO IP dataset
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Immunopurification of Ago1 miRNPs selects
for a distinct class of microRNA targets

Xin Hong®', Molly Hammell®", Victor Ambros®2, and Stephen M. Cohen®?

“Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604;
and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605

Contributed by Victor Ambros, July 22, 2009 (sent for review June 26, 2009)

microRNAs comprise a few percent of animal genes and have been
vecognlzed as important regulators of a diverse range of biological

ing the bi ical functions of miRNAs re-
quires effemve means to identify their targets. Combined efforts
from (ompu(atlonal predlctlon miRNA over- express-on or deple-
tion, and bi ication have i i of
potential miRNA-target pairs in cells and organisms. Complemen-
tarity to the miRNA seed sequence appears to be a common
principle in target recognition. Other features, including miRNA-
target duplex stability, binding site accessibility, and local UTR
structure might affect target recognition. Yet computational ap-
proaches using such contextual features have yielded largely

results and of their im-
pact has been limited. Here, we compare two large sets of miRNA
targets: targets identified using an Agof i

fication method and targets identified among transcripts up-

miRNAs (e.g., ref. 16). Whole proteome analyses have shown
that miRNA induced chdnges in protein explssamn correlate
with changes in mRNA level, in trend if not in magnitude (17,
18). Yet, (hcrc are well-documented instances of miRNA-
mediated regulation at the protein level that do not involve
changes in mRNA level (14, 17, 18). Therefore, methods to
identify targets by miRNA-induced changes in expression profile
can only tell part of the story. This highlights the need for
alternative means to identify miRNA targets.

One such alternative involves identification of microRNA
targets by virtue of their physical association with miRNA-
containing ribonucleoprotein complexes (19-24). In ref. 19, we
reported a method based on Agol immunopurification (IP) that
proved to be effective. Eleven new targets were identified for
miR-1, including some that had not been predicted. Although
the specificity was high, with all new targets experimentally

after Agol We found surprisingly limited
overlap between these sets. The two sets showed enrichment for
target sites with different molecular, structural and functional
properties. Intriguingly, we found a strong correlation between
UTR length and other contextual features that distinguish the two
groups. This finding was extended to all predicted microRNA
targets. Distinct repression mechanisms could have evolved to
regulate targets with different contextual features. This study
reveals a complex relationship among different features in miRNA-
target recognition and poses a new challenge for computational
prediction.

Argonaute | gene regulation | RISC complex

ated, the method had limited sensitivity, identifying ~1/
10th of the expected number of targets. Here, we present an
improved Agol IP protocol, which permits identification of
hundreds of potential miRNA targets, and compare the contex-
tual features of targets identified by IP to the targets destabilized
at the mRNA level upon Agol depletion.

Results

In an effort to lmpmvc the sensitivity of miRNA IP, with
minimal loss of specificity, we tested a variety of antibody
concentrations, incubation times and wash conditions (Fig. S1).
Sensitivity was assessed by quantitative PCR to monitor miRNA
levels (over a broad range of abundance: miR-184 comprises
17% of I miBNA- miR-305: 1 §%: miR-7-0 1% miR-Qh-

Drosophila S2 AGO IP
e 38 miRNAs expressed + IPed

e 6,285 mRNAs expressed
e 1091 AGO-bound
e 5,194 not AGO-bound
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*Image from Wook
Chi et al 2009
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Fermi-Dirac binding model improves
miRNA target prediction efficiency
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ComiR: results on various high-
throughput datasets

Clcu||dia Coronnello
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Why ComiR performs better?

D. melanogaster self-test D. melanogaster set Il and IV*
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