Classification



Clustering vs Classification

Genes Samples

* Clustering: gene expression * Clustering: samples that cluster
similarity suggest that genes together are more likely to share
have similar functions clinical parameters

* Classification: predict a specific . Suryiva.l o
(testable) function for a gene * Activation of signaling pathways
with no functional annotation * Response to treatment

* Example: Gene X is involved in * Classification: given a gene
methionine synthesis: if you expression pattern make a
delete it cells will be unable to prediction about
synthesize methionine * Survival

* Which drug treatment is best



Gene function prediction

* Many genes of unknown function

* Some information can be learned from sequence: such as domain structure
* Thisis a kinase, transcription factor, etc—thisis often called “Molecular Function”

* Phenotypes are harder to predict

 Whatwould happen ifthistranscription factor was deleted
* Possibilities: embryonic lethality, immune abnormalities, nothing

* Thisif often called “Biological function”

* Need computational methods to assist with functional annotation

e Suggest arestricted set of candidate functions that can be
experimentally verified

* Functional data (such as gene expression) can be used to make
predictions about biological function independently from sequence
based analysis




The Gene Ontology (GO)

* To make new predictions we need a set of examples
* Controlled vocabulary for functional annotation

* Collaboration between three model organism databases, FlyBase
(Drosophila), the Saccharomyces Genome Database (SGD) and the
Mouse Genome Database (MGD), in 1998. Now it includes several of

the world's major repositories for plant, animal and microbial
genomes.

* three structured controlled ontologies that describe gene products in
terms of their associated biological processes, cellular components
and molecular functions in a species independent manner

* Terms are organized in a hierarchy for annotation at differentlevels of
detail



Example of the GO hierarchy
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Some notes about the general function prediction problem

Large number of functional classes: thousands (Gene

Ontology (GO)) : large multi-class classification BC0O00LOBL00000
Multiple annotations for each gene: multilabel iV /7317t /)]
classification—classesare not exclusive 22222a223i2222J
: : : : F 3R T INSIBIS
Differentlevel of evidence for functionalannotations: UHMY $ Qe Yy S g4y
labels at different level of reliability S s rCy Sy srESsSS
Hierarchical relationships between functional classes 66666666066666EGC
hierarchical relationshipsbetween classes (structured LN BEL X ETTTLT
output) FPE8L 888578458 7F
2529299379289 49197

VANVAND QAN

Examples are fundamentally limited by the total number Classical classification problem: classifying

of genes hand written digits
Class frequencies are unbalanced, with positive examples ~ ° Positives and negatives are well defined
usually largely lower than negatives: unbalanced e Large number of examples: easy to

classification obtain more

The notion of “negative example”is not univocally
determined: different strategies to choose negative

examples

* Only 10 classes

Exclusive



Gene function classification

* Data based classification problem
* Works like any other classification problem
* Genes are examples-Data are features h i
* Find a functionthat maps from featuresto labels |
e Each classification task requires a new function

* Network based
* Transformfunctional datainto a network that captures relationshipsamonggenes
* Perform classification on the networks

* Advantages
* Network construction is computationally intensive but once constructed can be reused
* Can be applied to future unforeseen classification tasks: new function or new phenotype
* Some functional data is already in network format—there are no features only relationships
* (Examples: physical and genetic interaction networks)
* Natural representation: as gene function is determined by the other genes it associated with



Microarray/gene expression for gene function prediction

* Recall: Methionine genes clusterin a
14 sample experiment

¢ FunCtionaI aSSOCiation ShOUId get The growth of the Gene Expression Omnibus
better as the number of experimentsis m samples
increased

.
=

=

o
o)
<

o
o
<

* We can combine data across many 1
unrelated gene expression datasets
* Gene Expression Omnibus is a public | P
repository of gene expression datasets | | “ml
0.2M ___—
* The cell-cycle dataset was number 24 0 _____________,,.,|||||||“““

2002 2004 2006 2008 2010 2012 2014
* Now we are up to 65,000 (across all
organisms)
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Number of data sets



Network based methods

* Building a network from feature data (i.e. gene expression)
* Simple approach-- correlate expression vectors for each gene pair

* Correlations across multiple experiments can be integrated together, how?
* Concatenateall data
* Weighted average-many different weighing schemes

* Buildinga graph that captures functional association well is a hard problem
with many solutions
* Making predictions about specific functions given a graph
* Guilt by association (GBA)
e Label propagation
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GBA overview

Experimental evidence of gene function \ mRNA expression
Protein—protein interactions
Key: [ known function Genome sequences go-expl;esslo: axr:alyslls, ;
B unknown function Genetic interactions SfomcLone a:ma |
Sequence comparison

Gene C has similar function to genes A, B, E, and F Parameter
Add the result to gold standard data space

(A) Omics data

Hypothesis: genes C and D have similar B) g:eTélrar::ltX ation

functions to A,B,E, and F

Construction and visualization of
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GBA: one of the first examples

* A combined algorithm for
genome-wide prediction
of protein function Nature
1999

* Input data includes gene
expression patterns

* The links suggest that
members of the YGR021W
family operate in
mitochondrial protein
synthesis

YGRO21W

— YCRO083W homology to thioredoxin

— MRPL2
— MRPL6 T \

member of
highly
conserved
protein family
of unknown
function

—— MRPL7

— MRPL16 ribosomal dicted t

- roteins ProEcisd 1o
MRPL23 P target

—— MRPS9 mitochondria

— MRPS28

— MRF1 peptide chain release factor protein

synthesis

—— YJR113C homology to ribosomal protein S7
—— MSY1 ttrosyl-tRNA synthetase

—— YGLO68W probable ribosomal protein L12
—— MGE1 heat shock protein/chaperone

— YDR116C homology to bacterial ribosomal L1 protein
—— YHR189W homology to peptidyl-tRNA hydrolase
—( SIS1/XDJ1 homology to DraJ heat shock protein )
—( PDR13/SSE1/LHS1 homology to Hsp70 ) ,/

:(RIB2 DRAP deaminase )

YDL036C homology to RIB2/pseudouridine synthase h

:(MIS1 C1-THF synthase ) )
ADE3 C1-THF synthase

—— TPI1 triose phosphate isomerase

—— YGL236C homology to conserved gidA family, unknown function

—— YOLO060C homology to hypothetical C. elegans protein M02F4.4



MouseFunc Competition

* Goal predict gene function
across GO categories for

Mouse genes

* Internal validation: hold out

set

e External validation: new
functional annotations that
were made while the
competition was in progress
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Methods overview

Compute several kernel matrices (SVM) for each data matrix, train one GO term specific SVM per kernel, and

map SVMs' discriminants to probabilities using logistic regression Calibrated ensembles of SVMs

Four different kernels are used per data set. Integration of best kernels and data sources is done using the Kernel logistic regression
kernel logistic regression model

Train SVM classifiers on each GO termand individual data sets, construct several Bayesian networks that Multi-label hierarchical
incorporate diverse data sources and hierarchical relationships, and chose for each GO termthe Bayesnet or classification [56] and Bayesian
the SVM vyielding the highest AUC integration
Combination of an ensemble of classifiers (naive Bayes, decision tree, and boosted tree) with guilt-by- Combination of classifier
association in afunctional linkage network, choosing the maximum score ensemble and gene network
Code the relationship between functional similarity and the data into a functional linkage graph and predict GeneFAS (gene function
gene functions using Boltzmann machine and simulated annealing annotation system)

Two methods with scores combined by logistic regression: guilt-by-association using a weighted functional

linkage graph generated by probabilistic decision trees; and random forests trained on all binary gene Funckenstein
attributes

Pairwise similarity features for gene pairs were derived from the available data. A Random Forest classifier
was trained using pairs of genes for each GO term. Predictions are based on similarity between the query gene Function prediction through query
and the positive examples for that GO term retrieval

Construct an interaction network per data set, merge data set graphs into a single graph, and apply a belief Function prediction with message
propagation algorithm to compute the probability for each protein to have a specific function given the passing algorithms
functions assigned to the proteins in the rest of the graph



GeneMANIA

GeneMANIA algorithm consists of two parts:

1. An algorithm, based on linear regression, for calculating

a single, composite functional association network from
multiple network derived from different genomic or
proteomic data sources

2. A label propagation algorithm for predicting gene

function given this composite network.—searches whole
network rather than neighbors




GeneMANIA label propagation algorithm

* Input
1. An association network
2. Alist of nodes with positive labels
* Possibly a list of nodes with negative labels
3. Initial label bias values

* Discriminant value assigned to each node by letting the initial label bias
propagate through the association networkto nearby nodes

* Labeled nodes are assigned to +1 and -1
* initial bias of unlabeled nodes to be the average bias of the labeled nodes:

(n*-n)/ (n*+n)

where n* is the number of positive and n is the number of negative
examples.



Discriminant values

* Given y; as the vector of gene labels defined above and a network
with values w;

* Solve the following objective function:
f = argmin Z(fz -y + Z Zwy(fz _]?)2
I

Solved by conjugate gradient method:

Iterative method for solving linear systems where taking inverses
is not practical



Real time predictions

www.genomebiology.com - Figure 4 Page 1 of 1
Figure 4. Resolution: standard / high
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Prediction performance of GeneMANIA on the MouseFunc I test benchmark. Prediction performance of
the first and second submissions to MouseFunc I (GeneMANIAEty-1 and GeneMANIAEnty-2, respectively)
as well as the version of the GeneMANIA algorithm we have implemented on the GeneMANIA webserver
(GeneMANIAWS) and the best achieved performance on the MouseFunc I test benchmark. Prediction
performance is indicated by mean 1 - area under the receiver operating characteristic curve (1 - AUC) in
the class, error bars show one standard error of the mean. Stars mark the evaluation classes in which a
GeneMANIA entry achieved lowest error on the test benchmark.

Mostafavi et al. Genome Biology 2008 9(Suppl 1):54 do0i:10.1186/gb-2008-9-51-54

http://www.genomebiology.com/2008/9/S1/S4/figure/F4

1172972015

e GeneMANIA is a webserver for
browsing networks

* Also works for real time
predictions using arbitrary gene
seeds



SVM recap

We would like to find a hyperplane to separate our negative and positive examples

e Arbitrary maximally separating hyperplane can overfit the data

examples)
 allowforsome error

+1 plane

regularization: maximum margin (the distance between closest correctly classified

. W'W X
min,, + ECEi
i=1

subject to the following inequality
constraints:

For all xjinclass+1
wix+b = 1- ¢, For all i
For all x;inclass -1 =0

wix+b < -1+ g



SVM for gene function prediction

 Classes very unbalanced
* Specific function we have 25 positive examples

* All other annotated genes (thousands) can be
considered negative For all x; in class - 1

* We need to adjust the penalty for misclassification so
that the total error on negative examples and total
error on positive examples are equal

* Many more features than examples

e Kernel trick: rewrite optimization problemin terms of
inner products of input feature vectors

* We can use Euclidean distance: RBF kernel P
* Experience show that for many biological problems T e
linear kernel works best [

e ..butwe can use the kernel trick toinput a network
instead of features

For all xjinclass+1

WTX+b >1- Si

wix+b <-1+ ¢,




Using the GO hierarchy to improve SVM predictions

1. »; nodes conditioned to their children (structure constraints)
2. ; nodes conditioned on their label y, (Bayes rule)
3. J; are independent from both , j#i and y,,j#i given ¥,

Hierarchical multi-label prediction of gene function Bioinformatics



* Probability of SVM output
conditioned on the true label is

Negative Examples

modeled as a Gaussian 1500 /\-
* Parameters can be inferred from ™| / \
labeled examples 500 yZ
: N
-5 -4 -3 -2 -1

Positive Examples
20 : ,

15¢

10}




Improvement across the hierarchy

* 105 terms/nodes of the GO BP (model organism S.cerevisiae)
* Hierarchical approach improves AUC results on 93 of the 105 GO terms

* Darker blue: improvements; darker red: deterioration; white: no change.



Classifying samples based on gene expression

*The promise: given genome wide gene expression we
should be able to predict clinical features that are not
obvious from symptoms, disease history, or histology LOW RISK

*Disease progression Fulluman

Q . @] No distant genome
oDrug response m wietL?EtZS;Zars » 25K

DPOP*

*MammaPrintis an FDA approved diagnostictestto ¢
assessthe risk that a breasttumor will metastasize to
other parts of the body. Actual classifier used is

tum | mMamm ~inge®
\AljithOL:;i;n;Oe;ear Ranking - “ aprIns

follow-up 70 most significant genes
predictive of recurrence

risk were identified

“Untreated” ‘ %\DD))/

* But based on work that led to this diagnostic tool it is
likely based on SVMs

* The researchers also performedsome feature
selection since only 70 genes are used by the classifier.

within 5 years

HIGH RISK




Reducing feature space for SVM classifier

* SVM is a very powerful classifier

* Problem: uses all the features —
each gene has a non-zero weight

e Reducing the feature space

* Popular method: Recursive
feature elimination

 This method often will include
features that on their own don’t
have any predictive power

* Alternative methods incorporate
statistics about the predictive
power of individual features

Initial
M features

Linear SVM,
r—) T lowest
w'x +b (

Feature rejection

values of |w,|)

- 1 features

\

T l k=k+1

SVM, classification
10-fold CV

Max
accuracy?
9

no
\SVM-RFE

Selected
(M-kt) features
>




Many promising findings do not hold up to scrutiny

* Microarrays: retracing steps Kevin R Coombes, Jing Wang& Keith A Baggerly

* Original study: Using publicly available data, they derived signatures from
microarray profiles of the NCI-60 human cancer cell lines with known in
vitro sensitivity or resistance to a particular drug. They used these profiles to
predict in vivo chemotherapeutic response to seven different drugs.

* Findings were not reproducible

* The lists of genes initially reported in the supplementary information on
the Nature Medicine website are wrong because of an 'off-by-one' indexing
error

* “When we apply the same methods but maintain the separation of training
and test sets, predictions are poor. Simulations show that the results are no
better than those obtained with randomly selected cell lines”



MAQC: sample classification challenge

* The MicroArray Quality Control (MAQC)-II study of common practices for the development and
validation of microarray-based predictive models

Hamner A Lung tumorigen vs. non-tumorigen (mouse)
Iconix B Non-genotoxic liver carcinogens vs. non-carcinogens (rat)
NIEHS C Liver toxicants vs. non-toxicants based on overall necrosis score (rat)
Breast cancer (BR) |D Pre-operative treatment response (pCR, pathologic complete response)
E Estrogen receptor status (erpos)
Multiple myeloma
(MM) F Overall survival milestone outcome (OS, 730-d cutoff)
G Event-free survival milestone outcome (EFS, 730-d cutoff)
Clinical parameter S1 (CPS1). The actual class label is the sex of the patient. Used as a
H “positive” control endpoint
Clinical parameter R1 (CPR1). The actual class label is randomly assigned. Used as a
I “negative” control endpoint

Neuro-blastoma (NB) [J Overall survival milestone outcome (OS, 900-d cutoff)
K Event-free survival milestone outcome (EFS, 900-d cutoff)
Newly established parameter S (NEP_S). The actual class label is the sex of the patient. Used as
L a “positive” control endpoint
Newly established parameter R (NEP_R). The actual class label is randomly assigned. Used as a
M “negative” control endpoint




Results
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Results on external validation
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Conclusions from the study

* Study end point was the most important factor
* Some tasks were easy and some were hard

* Model consistency, as measured by the overlap between selected
genes across two independent datasets, and biological validity, are
the genes known to be biologically relevant, correlated with
prediction accuracy

* Team proficiency was an important factor
* Industry teams did best
 Some teams made simple errors

e Careful unbiased internal cross-validation is important

* A portion of the dataset should be held out for the entire
classification pipelineincluding feature selection



Some more details

* Loess normalization is best!

* Partially confounded with end point
so may not be conclusive

e Discriminant analysis had the most
positive effect

* Recursive feature elimination did
not do well
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Possible interpretation

e Simple models seem to do better
DA is better than SVM-RFE

* External validation: data distribution
can be quite different
e Different noise profiles
e Different batch effects

* Powerful classifiers can capture more
dataset specific structure that is
irrelevant in another dataset

LDA:

maximizing the component
axes for class-separation

bad projection
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LOESS regression

* locally weighted scatterplot

smoothing

* Fit a polynomial locally—the T T e
polynomial fit determmes the value ”
at each point

* Almostalwaysfirstor second degree
polynomial

* Only a subset of the data is used for
each fit

* Fraction of data used is often called
the span

0.0 0.5 1.0 1.5
|

-0.5

-1.0

-1.5

* Controlsthe degree of smoothing I

* combines much of the simplicity of
linear least squares regression with
the flexibility of non linear
regression



Applied to normalization

A M-A Plot Before LOESS Normalization M-A Plot After LOESS Normalization
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e Transform X-Y scatter plot intoan (X+Y)/2 and (X-Y) plot
* Apply Loess regression to make the local average 0

* Will work well on smaller experiments when quantile normalization is
undesirable (if we have a few hundred measurements)



Sample classification summary

* Data is limited by our ability to collect samples
* Still have many more features than training example

* Validation datasets may look very different from the training
datasets

* Biological validity of the classifier is a good predictor of
performance on independent data



