Computational Genomics

http://www.csb.pitt.edu/Computation alGenomics/

Maria Chikina mchikina@pitt.edu 3064 BST-3 Seyoung Kim sssykim@cs.cmu.edu 7721 Gates Hillman Complex

Register for Piazza and use it for all communication

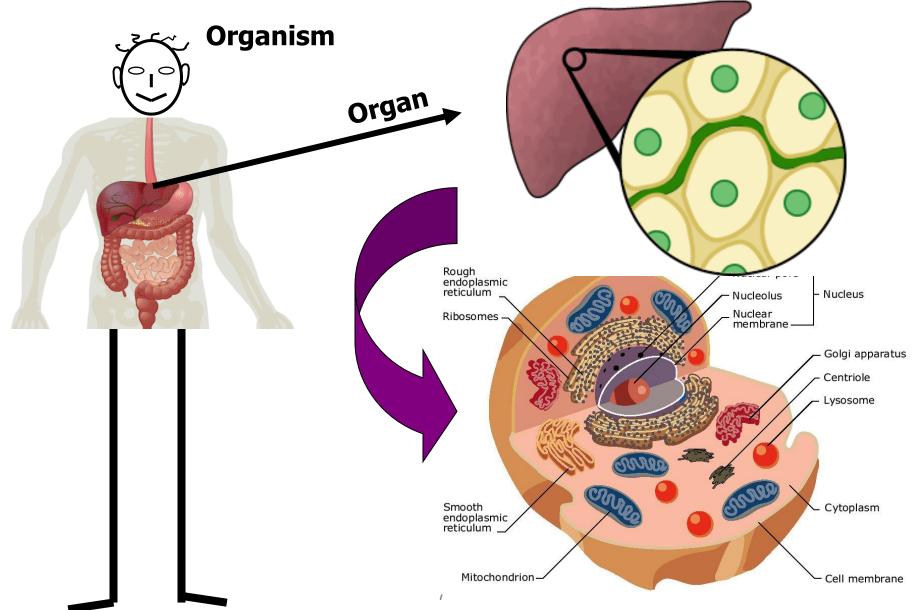
Topics

- •Sequence analysis
- Gene expression/multivariate data analysis
- Population Genetics
- Systems biology

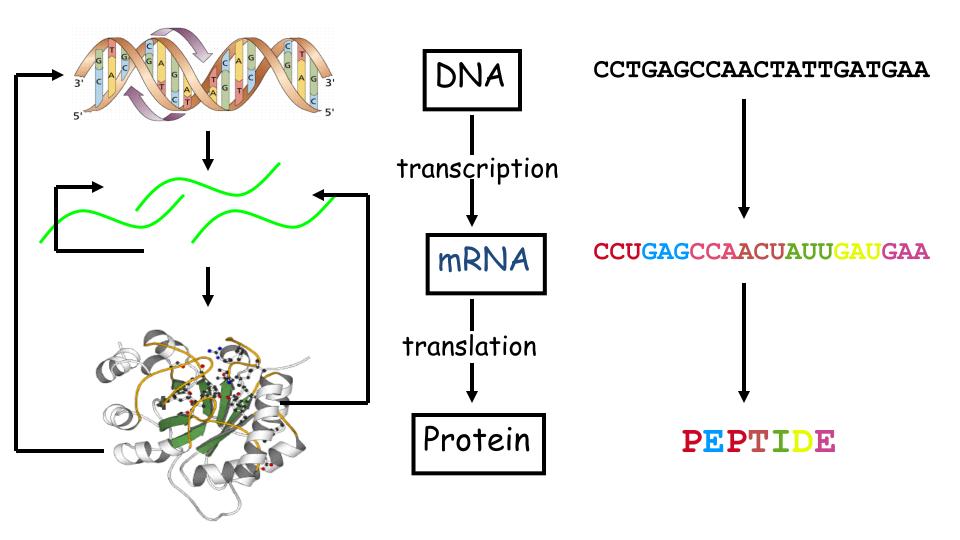
Class grades

- Problem sets (40%)
- Midterm (30%)
- Project (25%)
- Class participation (5%)

Assignments


- 4 assignments
- Some programming component
- Languages: python and R

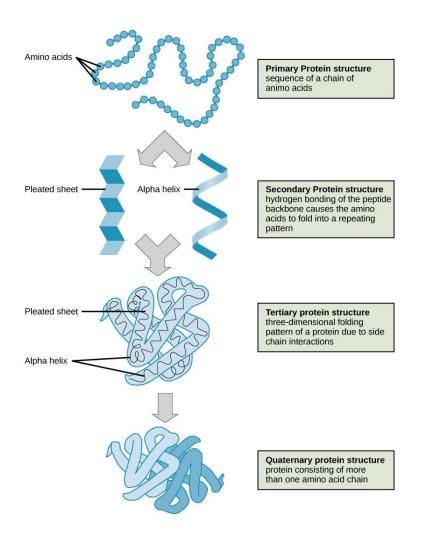
High level and brief intro to molecular biology and genomics


Types of Cells

- Prokaryotes:
 - Bacteria
 - Do not contain compartments-biochemical soup
- Eukaryotes:
 - Plants, animals, humans
 - DNA resides in the nucleus
 - Highly organized cells
 - Yeast is the model eukaryote

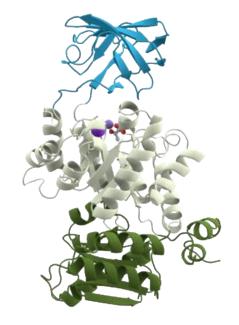
Organism, Organ, Cell

Central dogma

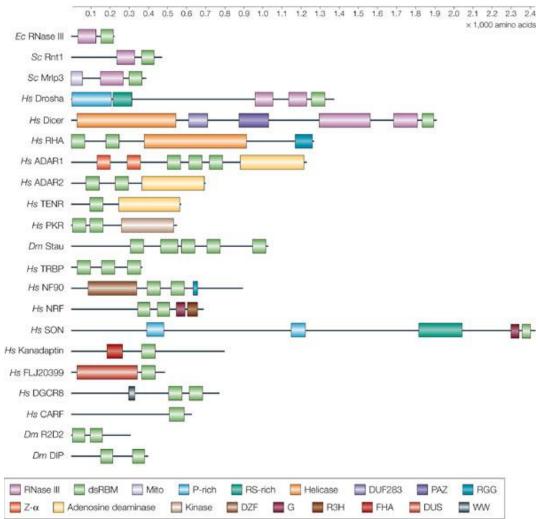

Protein Types and Functions

Туре	Examples	Functions
Digestive Enzymes	Amylase, lipase, pepsin, trypsin	Help in digestion of food by catabolizing nutrients into monomeric units
Transport	Hemoglobin, albumin	Carry substances in the blood or lymph throughout the body
Structural	Actin, tubulin, keratin	Construct different structures, like the cytoskeleton
Signaling	Hormones, receptors, signal transduction	Protect the body from foreign pathogens
Contractile	Actin, myosin	Effect muscle contraction
Storage	Legume storage proteins, egg white (albumin)	Provide nourishment in early development of the embryo and the seedling

Genes Encode for Proteins


	Second Letter							AMINO ACID					AMINO ACID							
		U	J	с			4	6	;]	_		COO ⁻ H ₃ N − C − H	COO ⁻ H ₃ N − C − H	СОО ⁻ Н ₃ N - С - Н	sdt	СОО ⁻ H ₃ N — С — Н	COO ⁻ H ₃ N − C − H	СОО ⁻ Н ₃ N – С – Н	
	U	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	U C A G		aliphatic R groups	I H Glycine COO⁻ + I	I CH ₃ Alanine COO [−] + I	CH CH ₃ CH ₃ Valine COO ⁻	ily charged R groups	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	CH ₂ CH ₂ CH ₂ CH ₂ H	-CH₂ -CH2 -CH -CH -CH -CH -CH -CH -CH -CH -CH2 -CH2	
1st letter	C	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	U C A G	3rd	Nonpolar, alipl	H ₃ N – C – H I CH ₂ CH CH CH ₃ CH ₃	$\begin{array}{c} H_{3}\dot{N} - \dot{C} - H\\ I\\ CH_{2}\\ I\\ CH_{2}\\ I\\ S\\ I\\ \end{array}$	$H_{3}\dot{N} - \dot{C} - H$ $H - C - CH_{3}$ I CH_{2} I CH_{3}	groups Positively	+NH ₃ Lysine	$ \begin{array}{c} I = ^{h}H_{2} \\ I \\ NH_{2} \\ Arginine \\ 00^{-} \end{array} $	Histidine	
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	U C A G	letter		Leucine COO^- $H_3N^+ - C^ H$ I CH_2OH	CH_{3} Methionine COO^{-} $H_{3}^{+}N - C - H$ $H - C - OH$	Isoleucine COO^{-} $H_3^{+}N - C - H$ I CH_2	charged R		+ 1		
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	U C A G				uncharged R groups	Serine COO ⁻ L H C H	H = C + OH = OH	Cysteine COO^{-} $H_{3}N - C - H$	groups Negatively	C00-	C00 ⁻
												Polar, unch	H ₂ N CH ₂ H ₂ C CH ₂ H ₂ C CH ₂	$H_{2N} = C = H_{1}$	H ₂ N O Glutamine	Nonpolar, aromatic R		Tyrosine	Tryptophan	

Protein structure

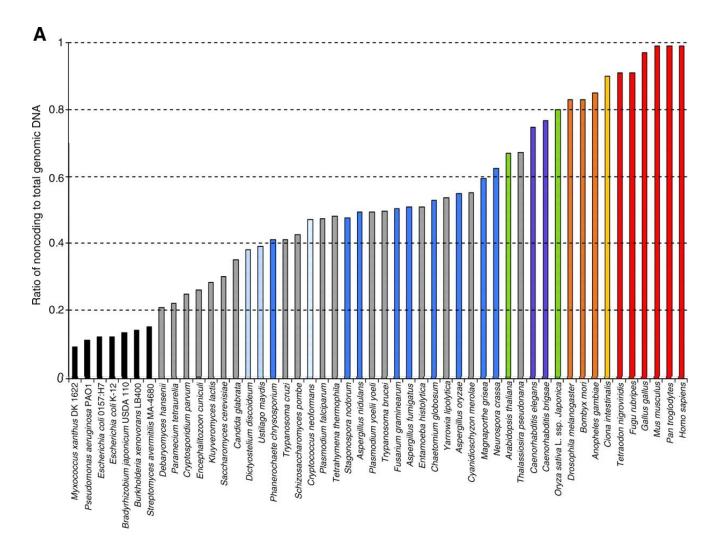


Domains and Motif

- Domain is a conserved part of a given protein's tertiary fold and function independently
- Motif peptide sequence which also appears in a variety of other molecules.

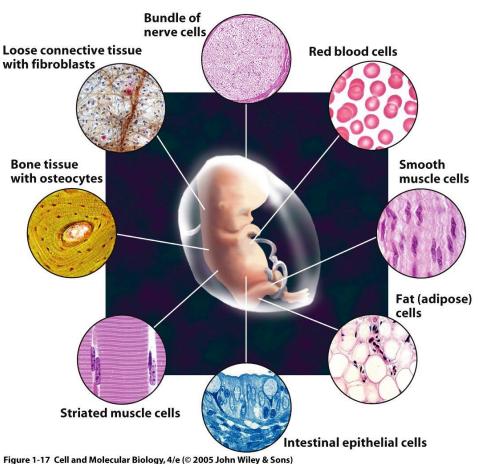
Domains and motifs

- Enzymatic function
- Interaction with other proteins
- Localization

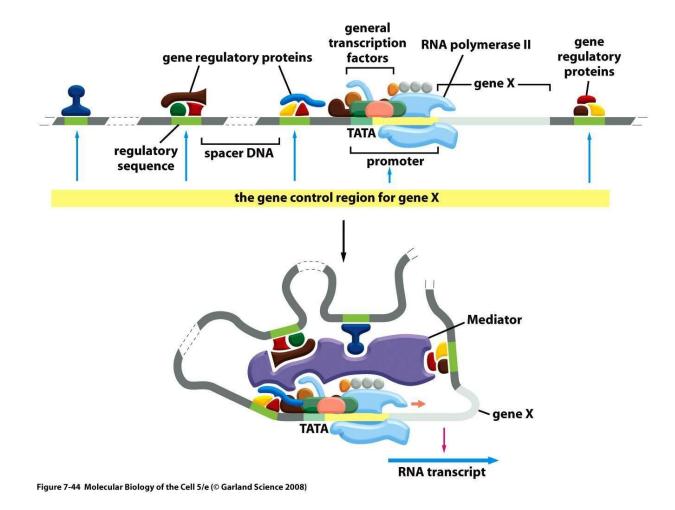

Nature Reviews | Molecular Cell Biology

Genome

• A genome is an organism's complete set of DNA (including its genes).


	Genome size	Num. of genes
E. coli	.05*10 ⁸	4,200
Yeast	.15*10 ⁸	6,000
Worm	1*10 ⁸	18,400
Fly	1.8*10 ⁸	13,600
Human	30*10 ⁸	25,000
Plant	1.3*10 ⁸	25,000

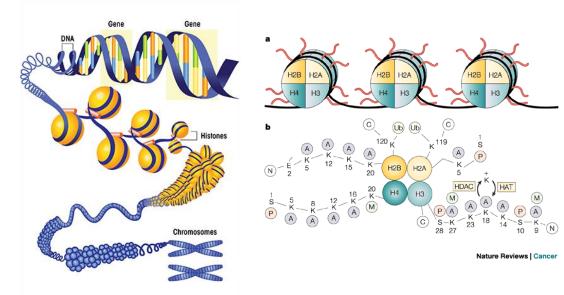
Non-coding fraction of the genome

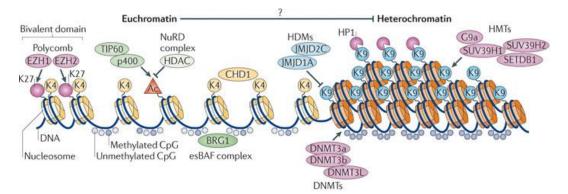


Multicellular organisms

- (Almost) every cell has the same genome and the same protein coding capacity
- They don't all make the same proteins

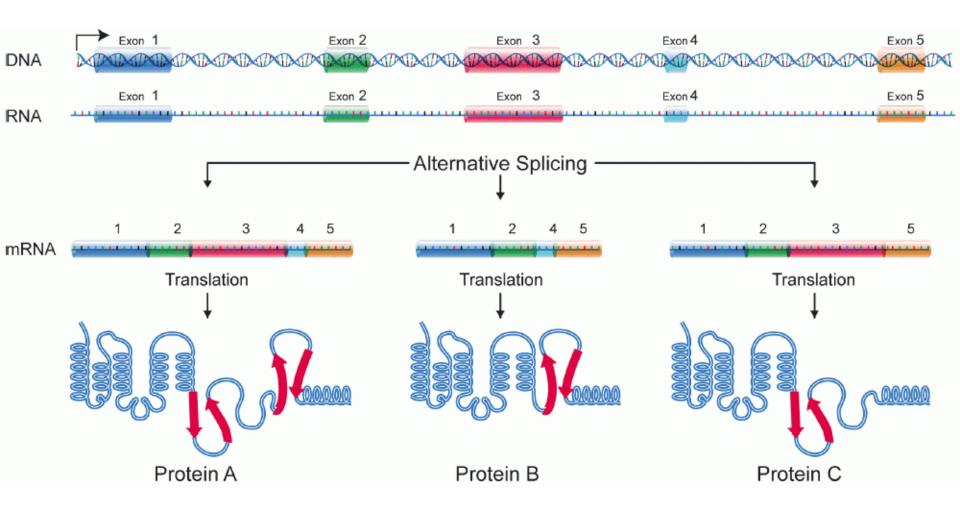
Gene transcription is highly regulated


Many regulatory proteins bind in a sequence specific manner


Motif	TF	Motif	TF
	Spt10		E2F
	TBP	GC box	Sp1
	NI		NI
	NI		HiNF-D
	POU2F1	IRF-7	IRF-7
	NF-Y		IRF-1
a-CP1	NF-Y	TATA box	TIIFD

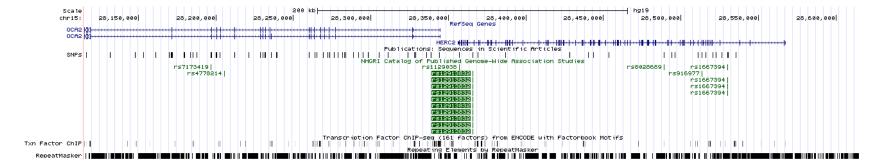
Motifs are easy to find Challenging to predict functionality

Epigenetics


- Beyond/on-top-of genetic
 - Study of (stable/heritable) non-genetic differences in traits
- Chromatin: DNA and all the proteins bound it
- Chromatin structure dictates the transcriptional potential of a cell
- The structure is heritable: across cell divisions and sometimes transgenerationally

Nature Reviews | Molecular Cell Biology

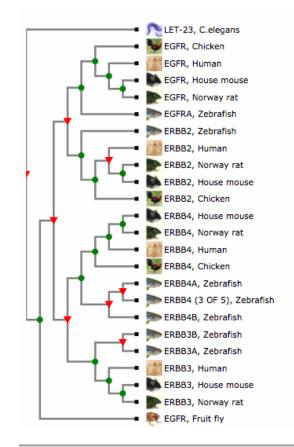
RNA splicing

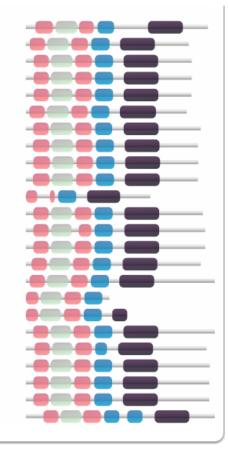

What is a mammalian genome the genome

- Coding segments code for protein, only about 2%
- The rest:
 - Psuedogenes-genes that have lost their ability to code for protein
 - introns
 - non coding genes
 - Regulatory elements
 - Not mutually exclusive!
- 10-15% is constrained based on conservation

Genome view: OCA2

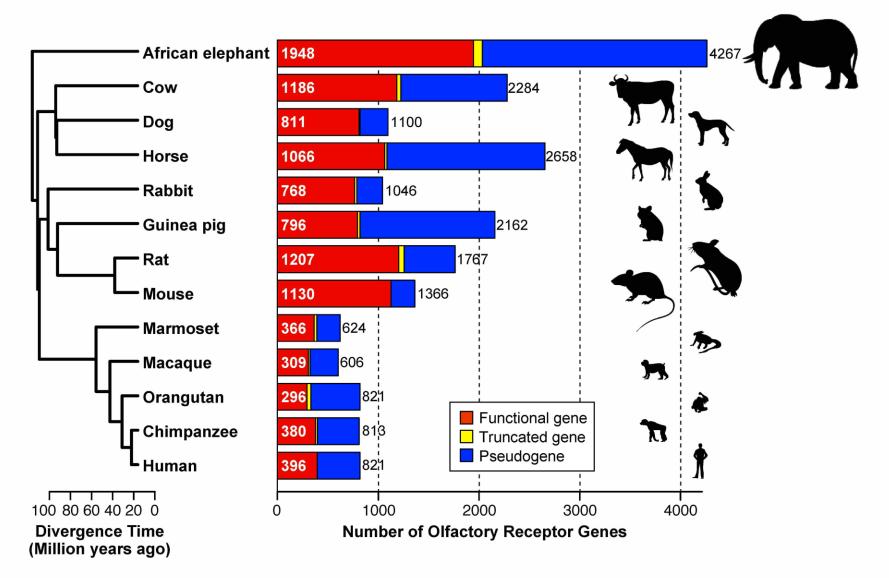
- oculocutaneous albinism II:
 - Involved in melanin production
 - Mutations in this gene cause changes in coloration in both skin and iris
- Eye color can be affected independently of skin color via a regulatory region in a neighboring gene





UCSC genome browser

Protein families

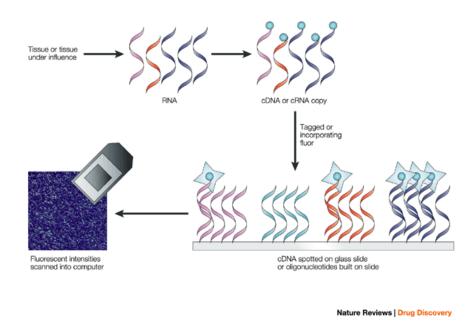

Homolog genes related to a second gene by descent from a common ancestral DNA sequence.
Ortholog genes in different species that evolved from a common ancestral gene by speciation.
Paralog Paralogs are genes related by duplication within a genome.

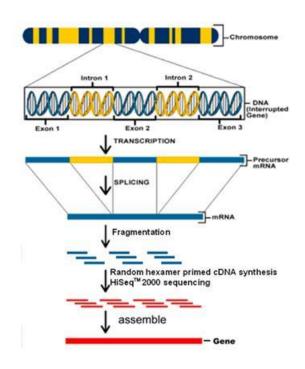
Treefam database

Some families are very large

Genomic data

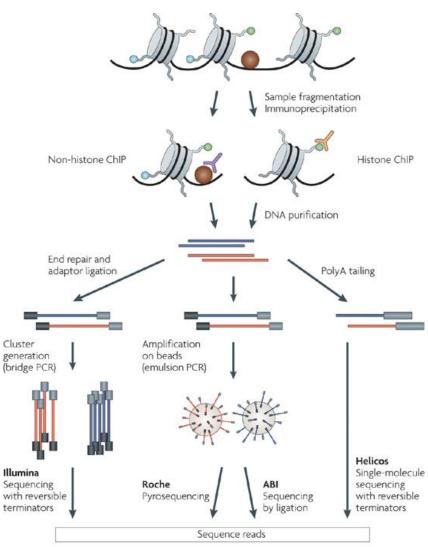
- Sequence
 - Identify genes/proteins
 - Assign molecular function based on similairy to known proteins, domains, and motifs
 - Examples of functional classes assigned from sequence
 - Digestive enzyme
 - G-coupled protein receptor
 - Kinase
 - Non-coding regions –identify potential TF binding sites
- Functional genomics data
 - Gene Expression-assays genes only
 - quantify which mRNAs are made when/where
 - example: which genes are transcribed only in neurons?
 - Chromatin assays-probe non-genic regions for function
 - How is gene expression regulated biochemically
 - Assay for chromatin structure: open/closed?
 - Find where in the genome a regulatory protein binds


Gene Expression


Hybridization and Scanning— Microarrays

- Quantity of mRNA is measured by fluorescence
- Requires complementary probes so the set of genes must be known

RNAseq using next generation sequencing methods


- Quantify by counting reads
- Don't have to know what you are looking for
- Generates much more data

ChIPseq

- Chromatin Immuno Precipitation followed by sequencing
- Cross link DNA and proteins bound to it via a covalent bond
- Select the complexes of interest with an antibody
 - Transcription factors
 - Specific histone modification
- Sequence the bound DNA
- Bound regions are found across the genome—maybe be very far from the nearest gene

Nature Reviews | Genetics