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Recent years have seen a significant increase in the number of computational
studies that adopted network models for investigating biomolecular systems dy-
namics and interactions. In particular, elastic network models have proven useful
in elucidating the dynamics and allosteric signaling mechanisms of proteins and
their complexes. Here we present an overview of two most widely used elastic
network models, the Gaussian Network Model (GNM) and Anisotropic Network
Model (ANM). We illustrate their use in (i) explaining the anisotropic response of
proteins observed in external pulling experiments, (ii) identifying residues that
possess high allosteric potentials, and demonstrating in this context the propen-
sity of catalytic sites and metal-binding sites for enabling efficient signal trans-
duction, and (iii) assisting in structure refinement, molecular replacement and
comparative modeling of ligand-bound forms via efficient sampling of energeti-
cally favored conformers. C© 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 426–439
DOI: 10.1002/wcms.44

INTRODUCTION

M ost proteins are molecular machines. They
achieve their function because they possess

the ability to undergo the structural changes required
for their function. These structural changes may vary
over a broad range of scales, from atomic fluctua-
tions and side chain rotations to collective domain or
subunit movements. Yet, even the large-scale move-
ments do not, in principle, alter the native ‘fold’; the
packing of secondary structural elements and/or the
distribution of tertiary and quaternary contacts be-
tween residues remain unchanged for the most part.
The collective motions allow for cooperative rear-
rangements of domains with respect to each other,
or loop motions, which maintain the overall architec-
ture/fold, or allow the protein to restore its original
conformation, similar to an elastic material. Here,
cooperative motions refer to conformational changes
that collectively engage large portions of the struc-
ture and usually lie at the lowest frequency end of
the spectrum of modes accessible to the protein un-
der physiological conditions. Not surprisingly, elastic
network models (ENMs) have been broadly exploited
in unraveling protein dynamics, based on the premise
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that proteins have ‘intrinsic’ abilities, uniquely en-
coded by their three-dimensional (3D) fold, to sample
functional fluctuations near their native state.1,2

From a statistical thermodynamics perspective,
the accessible conformations result from the equilib-
rium fluctuations near the global free energy mini-
mum. Some directions of fluctuations are more proba-
ble than others. These are the ‘soft modes’ of motions;
they evolve along a direction, on the multidimensional
energy landscape, which by definition involves a rel-
atively small energy ascent for a given deformation.
These same modes are also expected to be most fre-
quently recruited to achieve function, following the
hypothesis that structures may have evolved to ac-
cess most easily their functional movements. This hy-
pothesis motivated a large body of studies aiming at
characterizing the soft modes and exploring their rel-
evance to function. A popular approach has been to
extract the soft modes from the normal mode analysis
(NMA) of ENMs. In parallel, simplified models such
as the Gaussian network model (GNM),3,4 rooted in
the statistical thermodynamics of polymer networks,5

have been broadly used in the last decade. Theory and
Methods section provides an overview of the theory
and assumptions underlying these approaches.

ENM–NMAs and GNM analyses are now pro-
viding us with a better understanding of the coopera-
tive machinery and design principles of biomolecular
systems, as will be illustrated for a few cases in the
section Learning from Network Models: Cooperative
Responses and Communication. First, the soft modes
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are highly cooperative as may be quantified by their
degree of collectivity,6 i.e., they cooperatively entail a
large part of the molecule, if not the entire molecule.
They are also very robust, as indicated by the fol-
lowing two features: (i) detailed atomic coordinates
or energetics have negligible effect on these modes,
as originally demonstrated by Tirion,7 and confirmed
in many studies since then. This is presumably due
to the fact that they are collectively defined by all
the 3N-6 internal degrees of freedom for a struc-
ture of N interaction sites (atoms or pseudoatoms);
and (ii) the intrinsic, structure-encoded fluctuations
in conformations undergone by enzymes (in the ab-
sence of ligand binding) are in close accord with
the changes observed in ligand-bound forms, sug-
gesting that enzymes are predisposed to make the
conformational rearrangements required for ligand
binding.8,9 A similar behavior is exhibited by antibod-
ies when binding their antigens10,11 or by allosteric
proteins in general.1 It should be noted that predis-
position of the enzyme means the accessibility of the
structural transition path, or a given mode of motion,
rather than the coexistence of the alternative state.
As such, predisposition does not exclude the adapta-
tion of a given protein upon binding its ligand, but
implies that the directions of structural change are se-
lected from among those intrinsically accessible prior
to deformation.

Second, the accessible modes provide a complete
orthonormal basis set for describing the equilibrium
motions in the 3N-6 dimensional space of internal
coordinates. Each mode may be viewed as a mech-
anism of relaxation, or dissipation of energy, if the
structure is subjected to a perturbation from the en-
vironment. Low-frequency (or soft) modes evidently
constitute the most favorable paths of energy dissi-
pation, as they incur the lowest ascent on the energy
surface for a given deformation. Or, the accommoda-
tion of a given external stress by a soft mode would be
expected to entail a lower internal resistance; there-
fore, soft modes are naturally activated in response to
perturbations. The effective forces measured for ex-
erting uniaxial tensions along different directions can
indeed be explained by the selective recruitment of
the modes that comply with the extension.12,13 This
concept will be elaborated in the section Anisotropic
Response to Mechanical Stress: Selection of Suitable
Modes.

Third, biomolecular structures need to be opti-
mally ‘wired’ to efficiently transmit signals, to couple
or exchange their chemical and mechanical energies,
or induce allosteric responses. ENM representation
of proteins permits us to utilize graph theory, along
with information theoretic approaches and spectral

clustering techniques to identify the sites that play
a critical role in the flow of information across the
‘network’ of amino acids in the folded state. The col-
lective fluctuations predicted by the GNM also define
signal propagation mechanisms, as derived using a
Markovian model in a recent study.14 Certain ‘nodes’
are distinguished by their effective signal transmis-
sion, or allosteric communication, properties. Exam-
ination of the identity of such key sites reveals a
striking preponderance of active sites (e.g., catalytic
residues and metal-binding sites), suggesting that effi-
cient transmission of signals is an inherent, structure-
encoded property of active sites. Conceivably, active
sites of proteins evolved to be positioned at sites that
lend themselves to efficient communication. Examples
will be presented in the section Reconciling Equilib-
rium Dynamics and Signal Propagation Stochastics.

A practical utility of ENM–NMA of proteins is
the predictions of collective changes of structures that
are expected to be most readily accessible or to gener-
ate alternative conformations that satisfy certain re-
quirements, e.g., optimal binding of a substrate.8,10,15

Conformational changes along the soft modes have
indeed been the focus of essential dynamics analysis of
molecular dynamics (MD) simulations trajectories16

and principal component analysis of ensembles of
structures.8 The soft modes are advantageously ex-
ploited for deforming high-resolution structures to fit
cryo-electron microscopy (EM) images,17–19 for struc-
tural refinement, and for generating alternative con-
formations that would suitably account for structural
changes stabilized in various complexes/assemblies
(e.g., upon binding substrate proteins or ligands).
NMA in Structural Refinement section will summa-
rize recent developments in that direction and illus-
trate the utility of ENM–NMA in refining homology
models.

THEORY AND METHODS

Normal Mode Analysis
Classical NMA originated from spectroscopic analy-
ses of molecules, in which the absorption in the vi-
brational spectra is given by normal modes. Its first
application to proteins dates back to early 1980s.20–22

Renewed interest in the last decade stems from the
fact that the low-frequency modes can be robustly
and efficiently derived using simplified models such
as ENMs, and despite such simplifications, the global
modes accessible to biomolecular systems are ro-
bustly determined and they usually relate to func-
tional motions.23,24
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The potential energy V(q) of a molecular system
of n degrees of freedom (e.g., atomic coordinates) may
be approximated to the second order of the series
expansion around the equilibrium state q0 = [q1

0 q2
0

q3
0 . . . qn

0]T as:

V(q) = 1
2

∑
i, j

(
qi − q0

i

) [
∂2V
∂qiqj

]0 (
qj − q0

j

)

= 1
2

�qT K �q, (1)

where �q is the 3n-dimensional vector of the in-
stantaneous fluctuations, the superscript T desig-
nates its transpose, and K is the positive semidefi-
nite matrix of second derivatives of the potential with
respect to atomic coordinates. The ijth element of K
is Kij = [∂2V/∂qi ∂qj]0

. If we treat structural points as
harmonic oscillators in the absence of other effects,
the protein obeys the equation of motion:

M
d2�q
dt2

+ K �q = 0, (2)

where M is a diagonal matrix composed of n superele-
ments mi I3 along the diagonal, where mi is the mass
of the ith atom and I3 is the identity matrix of order
3. The general solution to Eq. (2) is a 3n-dimensional
vector of the form �q(t) = aeiωt, which, upon substi-
tution into Eq. (2), leads to

(−ω2 M + K) a = 0. (3)

Premultiplication of Eq. (3) by M− 1
2 yields

ω2M
1
2 a = M− 1

2 Ka = M− 1
2 K[M− 1

2 M
1
2 ]a, which, upon

the change of variables, u = M1/2a, λ = ω2, and H =
M− 1

2 KM− 1
2 , leads to the eigenvalue equation

λ u = Hu. (4)

NMA is the solution of this equation to ob-
tain the 3n-6 nonzero eigenvectors u(k) of the Hessian
H, along with the corresponding eigenvalues, λk. The
eigenvectors are 3n-dimensional vectors, the elements
of which are organized in 3D vectors that represent
the displacements u1

(k), u2
(k), . . . un

(k) of the n atoms
away from their equilibrium positions as the struc-
ture reconfigures along a given mode (e.g., mode k);
and the eigenvalue λk is the corresponding squared
frequency. λk scales with the curvature of the energy
landscape along mode k. Thus, the lower frequency
modes have a smaller curvature/stiffness and they un-
dergo larger excursions from the energy minimum for
a given energy increase, hence their ‘soft modes’ at-
tribute.

One clear limitation of this method is its appli-
cability to near-native conditions only, because it im-
plicitly assumes linear dynamics, all interactions being

approximated by harmonic potentials. This assump-
tion is strictly valid in the immediate neighborhood
of the global energy minimum. Proteins are subject,
however, to anharmonic potentials and nonlinear dy-
namics, which are manifested by the ruggedness of
the energy landscape and multiple minima/barriers.
Even side-chain bond rotations exhibit two or three
isomeric states often approximated by cosine func-
tions. Furthermore, solvent damping effect is not ac-
counted for by conventional NMA. The results from
NMA should therefore be interpreted in the context
of these approximations. As discussed below, coarse
graining presents, in a sense, the advantage of elimi-
nating certain degrees of freedom and resulting in a
‘smoother’ energy landscape where local minima are
overlooked (or overcome) during collective motions,
providing access to substates separated by low-energy
barriers, but this comes at the cost of loosing atomic
level accuracy.

GNM and Anisotropic Network Model
The use of ENMs to represent native proteins has
the following two computational advantages: (i) there
is no need for energy minimization and the Protein
Data Bank (PDB)25 structure is assumed to represent
a global energy minimum, and (ii) a coarse-grained
model is adopted for structure and energetics; typ-
ically, each node represents a residue and the pairs
of nodes within a certain cutoff distance (Rc) are
connected by springs of uniform force constant γ ,
which significantly reduce the size and complexity of
H. Two ENMs, the GNM3,4 and the anisotropic net-
work model (ANM),26–28 have found wide use in the
last decade.

Gaussian Network Model
Following the original statistical thermodynamics the-
ory of random polymer networks,5 the network nodes
are assumed to undergo Gaussian fluctuations �Ri

(1 ≤ i ≤ N) about their mean positions. Likewise, the
distance vectors between nodes undergo Gaussianly
distributed fluctuations �Rij = Rij − Rij

0 = �Rj − �Ri

(Figure 1). The coordinates of α-carbons are used to
define the spatial position of the nodes. The GNM po-
tential is given in terms of the fluctuations �Ri = Ri –
Ri

0 in the position vectors of the nodes as3

VGNM = γ

2

⎡
⎣∑

i

∑
j, j>i

(−�ij)[�R j − �Ri ]2

⎤
⎦

= γ

2
[�XT��X + �YT��Y + �ZT��Z],

(5)
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FIGURE 1 | Schematic representation of equilibrium fluctuations.
A portion of the protein backbone is displayed by the dotted curve.
Filled dots refer to interaction sites (e.g., Cα-atoms) that are adopted as
the network nodes. Ri

0 and Rj
0 designate the equilibrium positions of

residues i and j; Ri and Rj are their instantaneous position vectors. The
original and instantaneous separations are indicated by the solid line
and dashed line, respectively. The fluctuations in the position vectors
are given by �Rj and �Ri . Rij

0 and Rij designate the equilibrium and
instantaneous distance vectors between residues i and j. The change in
the interresidue distance vector is related to the fluctuations in residue
positions as �Rij = Rij − Rij

0 = �Rj − �Ri , and may be expressed as
a weighted sum over the contributions �Rij

(k) of individual modes.

where � is the Kirchhoff (or connectivity) matrix, the
off-diagonal elements of which are defined as �ij = −1
if |Rij| ≤ Rc and zero otherwise, and the diagonal ele-
ments are evaluated from the summation �ii = −�j �ij

over all off-diagonal elements in the ith row (or col-
umn); �X, �Y, and �Z are the N-dimensional vec-
tors of the respective X-, Y-, and Z-components of
the fluctuation vectors �R1, �R2, . . . , and �RN cor-
responding to the N residues.

The cross-correlations between the fluctuations
of residues i and j are found from the statistical me-
chanical average3

〈�Ri · �R j 〉 =
∫

(�Ri · �R j ) exp(−V/kBT)d{�R}/

×
∫

exp(−V/kBT)d{�R} = 3kBT
γ

[�−1]ij, (6)

where [�−1]ij is the ijth element of �−1, kB is the
Boltzmann constant, and T is the absolute tempera-
ture. Note the determinant of � is 0, i.e., � cannot be

inverted. Instead, its pseudoinverse is calculated using
the N − 1 nonzero eigenvalues σ k and eigenvectors
v(k) of �. In compact notation,

C(N) = 3kBT
γ

�−1 = 3kBT
γ

N−1∑
k=1

[
σ−1

k v(k)v(k)T]
, (7)

where C(N) is the N × N covariance matrix; its ijth
element is Cij

(N) = <�Ri �Rj>, and the ith diagonal
element Cii

(N) is simply the mean-square fluctuations
<(�Ri)2> of residue i. The contribution of any sub-
set of modes to the cross-correlations or mean-square
fluctuations may be evaluated by performing the sum-
mation in Eq. (8) over this particular subset. Note that
the soft modes (smallest eigenvalues) make the largest
contribution to the covariance. The eigenvectors are
normalized such that the plot of [v(k) v(k)T]ii as a func-
tion of residue i represents the probability distribution
of residue fluctuations in mode k, also called the kth
mode profile.

Anisotropic Network Model
The ANM potential, VANM, is similar in form to
VGNM, except for the replacement of the scalar prod-
uct [�Rj − �Ri]2 ≡ [(Rij − Rij

0) • (Rij – Rij
0)] in Eq. (6)

by [|Rij| − |Rij
0|]2 where |Rij| designates the magnitude

of Rij. Thus, VGNM penalizes the change in the orien-
tation of �Rij even if the magnitude of the distance
vectors is maintained, whereas VANM is exclusively
based on distance changes. The second derivative of
VANM leads to expressions of the form26

∂2VANM/∂ Xi ∂Yj |R0

= −γ �ij
(
Xj

0 − Xi
0)(Yj

0 − Yi
0)/(

Rij
c)2

= −γ �ij
(
Xij

0 Yij
0)/(

Rij
0)2 (8)

in terms of the components Xi
0, Yi

0, and Zi
0 of Ri

0.
This permits us to express the elements of ANM Hes-
sian H in closed form, and easily evaluate the ANM
eigenvector u(k) and eigenvalue λk, (1 ≤ k ≤ 3N-6),
which provide information on the shape and frequen-
cies of normal modes subject to VANM. u(k) is a 3N-
dimensional vector, composed of 3D vectors u1

(k),
u2

(k), . . . uN
(k), that describe the displacements of all

N residues in mode k. The change in interresidue dis-
tance induced by mode k is given in terms of the
elements of u(k) as

�R(k)
ij = R(k)

ij − Rij
0 = (kBT/λk)1/2[u(k)

i − [
u(k)

i

]
. (9)

Likewise, a 3N × 3N covariance matrix, C(3N),
composed of blocks of size 3 × 3 associated with
the three components of each fluctuation vector �Rj

replaces C(N). C(3N) scales with the inverse of the
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Hessian as

C(3N) = kBTH−1 = kBT
3N−6∑
k=1

[
λ−1

k u(k)u(k)T
]
. (10)

The GNM/ANM results depend on the over-
all ‘fold’ rather than specific interactions or detailed
atomic coordinates. As such, they provide informa-
tion on the global dynamics favored by the partic-
ular fold/architecture, rather than local changes in
structure and interactions. The main utility of GNM/
ANM is indeed the ability to efficiently explore global
dynamics (collective motions in the low-frequency
regime), which have been demonstrated in multi-
ple studies to be insensitive to structural details or
detailed force fields. Results on the high-frequency
modes have limited utility: they permit us to iden-
tify potentially conserved sites and folding nuclei, but
provide no information on the mechanisms of local
motions.29–32 It should also be noted that protein
conformers used as input in, or generated as outputs
from, ENM–NMA are not energy minimized with a
molecular mechanics force field and hence may not be
directly utilized in docking studies that require atomic
level precision. Efforts are underway for designing
hybrid methodologies that combine the information
on global dynamics from ENMs and local motions
from MD simulations33 to efficiently explore mul-
tiscale processes. Also, sequence information is not
included in ENMs and hence single mutations that
result in loss of function are not captured by ENM
analysis of the mutant, unless there are structural
data for the mutant, which differ from that of the
wild-type protein. Clearly, NMAs with ENMs also
suffer from the same limitations (e.g., inadequate de-
scription of nonlinear effects, solvent effect, etc.) as
atomic NMA. Yet, the coarse-graining of the struc-
ture and interactions allows for efficient sampling of
domain rearrangements and cooperative movements
near native state conditions. These motions could be
hardly accessible (due to local energy barriers) should
a detailed, full atomic description of the structure and
dynamics be implemented.

Markovian Propagation of
Allosteric Signals
Network models provide a useful tool for investigat-
ing the communication and signaling properties of
complex systems. A widely used approach is model
signal transduction as a Markovian stochastic pro-
cess. We recently explored the possibility of probing
the stochastics of signal propagation in proteins us-
ing a discrete time, discrete state Markov model.14

The strength of interactions (or weight of edges) in
this network model (or the nonzero elements of �)
could be assumed to be uniform (as in the GNM)
as a first approximation. A slightly refined model,
however, is to take account of residue specificity at
a coarse-grained scale. To this aim, we define affini-
ties aij = Nij/

√
(NiNj) as the weights of the edges,

where Nij is the total number of heavy atom contacts
between residues i and j with the denominator cor-
recting for bias due to size (Figure 2). The degree dj

of each node is given by 
i aij. The Kirchhoff ma-
trix corresponding to this model is then � = D – A,
where D is the diagonal matrix of the degrees and A
is the matrix of affinities. The conditional probability
of transmitting a signal from residue j to residue i in
one time step is simply mij = dj

−1aij (where mij is the
ijth element of the Markov transition matrix M).14

A metric of efficiency of signal transmission in
network models is the hit time, which is the aver-
age number of steps it takes to transmit information
from broadcaster i to receiver j. This is described by
enumerating all possible ways to get from residue i
to residue j, weighted by the transition/conditional
probability of signal flow. The recursive equation to
evaluate the average hit time between nodes i and j is
given by:

H( j, i) =
n∑

k=1

[1 + H( j, k)]mki

=
n∑

k=1

mki +
n∑

k=1, k	= j

H( j, k)mki

= 1 +
n∑

k=1, k	= j

H( j, k)mki . (11)

Substituting M = DA−1 and � = D − A, H(j,i)
can be expressed in terms of the elements of �−1 as14

H( j, i) =
N∑

k=1

{[�−1]ki − [�−1] j i − [�−1]kj

+ [�−1] j j }dk, (12)

or, using Eq. (6),

H( j, i) = (3kBT/γ )−1
N∑

k=1

[〈�Rk. �Ri 〉 − 〈�Rj . �Ri 〉

−〈�Rk. �Rj 〉 + 〈�Rj . �Rj 〉] dk. (13)

H(j,i) depends on the direction of signal trans-
mission, i.e., H(j,i) 	= H(i, j).
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FIGURE 2 | Schematic description of the evaluation of affinity matrix elements. Two residues within interaction range are displayed, composed
of Ni = 7 and Nj = 11 atoms. The affinity is evaluated based on atom–atom contacts that are closer than a cutoff separation, e.g., 4.0 Å. In the
present case, there is only one pair of atom within this interaction rage, such that Nij = 1, and the affinity between this pair becomes
aij = Nij /

√
(NiNj) = 1/(77)

1
2 (see Markovian Propagation of Allosteric Signals section).

Commute time, τ (i, j) ≡ H(j,i) + H(i, j), is
another metric, which has no directionality.14 τ (i, j)
scales with the fluctuations in the distance vector �Rij

as

τ (i, j) ∝ {[�−1]ii + [�−1]jj − 2[�−1]ij}
= 〈�Rij.�Rij〉, (14)

where the proportionality constant is
(3kBT/γ )−1 �kdk. Eq. (14) is readily obtained
using Eq. (13) twice, for H(j,i) and H(i, j). Eqs (13)
and (14) permit us to bridge between statistical
physical quantities such as mean-square fluctuations
or cross-correlations with graph-theoretic concepts
such as hitting or commute times. We will illustrate
the utility of these concepts for analyzing signal trans-
duction behavior of proteins by way of application
to two cases in the section Reconciling Equilibrium
Dynamics and Signal Propagation Stochastics.

LEARNING FROM NETWORK
MODELS: COOPERATIVE RESPONSES
AND COMMUNICATION

Anisotropic Response to Mechanical Stress:
Selection of Suitable Modes
Biomolecules are often subjected to mechanical
pressures—e.g., within muscle fibers and micro-

tubules. This, together with recent advances in single-
molecule manipulation techniques, led to increased
interest in the mechanical response of proteins to ex-
ternal pulling forces applied at specific positions.34 A
database of results from such experiments has been
recently constructed.34,35

Theoretical studies for elucidating the relation-
ship between mechanical stability and biological func-
tion have been traditionally performed using steered
MD.36–40 More recently, network models and ana-
lytical treatments have been utilized. One example is
the ANM analysis of the anisotropic response to de-
formations in different pulling directions,12 presented
below in some detail. Although this approach assumes
that the unfolding path correlates with the ‘weak/soft
directions’ near the native state, other studies went on
to longer and more detailed simulations of the process
and demonstrated explicitly the relation between nor-
mal modes and the unfolding process by interactively
considering the specific interactions being broken. An
example is the work of Dietz and Reif41 wherein the
fractional force that each ‘bond’ experiences so as to
withstand a uniaxial tension was evaluated, which
also yielded good agreement with experimental data
on green fluorescent protein (GFP). In another study,
snapshots from stochastic simulations of stretching
have been analyzed.42 ENMs also assist in identifying
folding nuclei32,43 and exploring the order of events
in thermal unfolding. A recent application of GNM
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FIGURE 3 | (a) Comparison of mechanical stress (uniaxial tension) experiments with anisotropic network model (ANM) predictions for green
fluorescent protein (GFP). The plots on the left display the normalized contributions dij

(k) of ANM modes k = 1, 3N-6 (abscissa) to the deformation
of the molecule in response to uniaxial tension exerted at residues (i, j) = (K3, N212) (top) and (D117,Y182) (bottom). When pulling apart the
residues Lys3–Asn212 (upper diagram), the deformation is largely accommodated one soft mode (note the peak at mode 1). In the case of
Asp117–Tyr182 (lower diagram), the response is distributed over a broader range of modes, including high-frequency modes that entail high energy
cost. The force required to unfold the molecule by stretching in the Lys3–Asn112 direction was reported46 to be five times weaker than that needed
in the Asp117–Tyr182 direction, consistent with the mode distributions. (b) Complete mechanical resistance map generated for GFP by ANM. The
entries in the map represent the effective force constants <κ ij> (Eq. 15) in response to uniaxial tensions exerted at each of pair of residues. The
secondary structure of the protein is shown along the upper abscissa and on the right (blue arrows, β-strand; zigzag line, α-helix). The profile at the
lower part of the map displays the mean resistance per residue, averaged over all values in a given column. See our study12 for more details.

wherein native contacts are iteratively broken to sim-
ulate unfolding yielded results in accord with those
observed in MD and Monte Carlo simulations.43

The ANM permits us to calculate an effective
force constant <κ ij> for the stiffness/resistance of the
molecule against deformation under uniaxial tension
applied to residues i and j.12 The idea is simple: if these
residues already undergo long distance fluctuations
by virtue of intrinsically accessible slow modes, the
molecule is more ‘yielding’. <κ ij> is the ‘average force
constant’ evaluated using12

< κij >=
∑

k

dij
(κ)λk

/ ∑
k

dij
(κ), (15)

where dij
(κ) represents the contribution of mode k to

the extension of the interresidue distance Rij, given by
the projection of �Rij

(k) onto Rij
0, i.e., dij

(k) = �Rij
(k)

cos(Rij
0, �Rij

(k)).
We recently analyzed12 the mechanical behavior

observed by single-molecule atomic force microscopy
for a series of proteins.44–46 Figure 3 illustrates the
results obtained for GFP. The bars represent the
computed contributions dij

(k) of different modes to
the extensions along the pairs Lys3–Asn212 (top)

and Asp117–Tyr182 (bottom). In the former case,
the low-frequency modes make a larger contribution
(e.g., d3−212

(k) > 0.6 for k = 1), consistent with the
relatively low (∼115 pN) pulling force observed in
experiments.46 In the latter case, on the contrary,
d117−182

(k) values are more uniformly distributed over
a broader range of modes, including higher frequency
modes, which are energetically expensive. Consis-
tent with these predictions, the GFP is destabilized
at 548 pN upon pulling these two residues.46 Simi-
lar calculations performed for all residue pairs led to
the resistance map (<κ ij> values) displayed in Figure
3. The lower profile is the average over all entries in
each column, thus providing a measure of mechani-
cal resistance for each individual amino acid. Similar
calculations performed for various pulling directions
and various proteins yielded results in good agree-
ment with experiments despite the simplicity of the
theory and the differences in various experimental
conditions.12

In principle, the forces predicted by the ANM re-
fer to behavior in the immediate neighborhood of the
global energy minimum or to the resistance to initiat-
ing a motion in a particular direction. Experiments,
on the contrary, probe the unfolding behavior. The
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consistency between theory and experiments points to
a correlation between the original stiffness/resistance
to exiting from the folded state and the effective cost
of unfolding. The approach of Dietz and Reif,41 on
the contrary, assumes that a single bond breakage
is equivalent to complete unfolding. Both theoreti-
cal approaches are based on native contact topology
and cannot be used for unfolding processes wherein
the transition state is far from the native state. They
yield relative forces for different residue pairs, rather
than absolute values; and they lack sequence infor-
mation. Thus due to calibrations that depend on the
protein and on experimental conditions alike, these
models cannot compare values obtained for different
proteins or mutants. Despite such limitations, coarse-
grained (CG) models42,47 and in particular ENM-
based approaches12,13,41,42 appear as useful tools for
estimating the anisotropic response of proteins to ex-
ternal stress, and may assist in designing or interpret-
ing single-molecule experiments at a very low com-
puting time and memory cost.

Reconciling Equilibrium Dynamics and
Signal Propagation Stochastics
Equations (13) and (14) establish the connection
between information theoretic concepts (hit and com-
mute times) and physics-based equilibrium dynam-
ics (e.g., mean-square fluctuations in interresidue dis-
tances). Previous work demonstrated that hit times
are relatively small when targeting catalytic residues,
consistent with the efficient communication require-
ments of active sites.14 A more recent study also
shows that metal-binding residues follow the same
trend.48

Figure 4 illustrates these concepts for two ex-
ample cases. Panels (a)–(c) display the results for a
xylose isomerase that binds a cobalt ion. Panel (a)
shows the hit time map of the metal-binding protein.
It can be seen that signal propagation properties es-
sentially depend on the target site (abscissa). For a
clearer understanding of the signaling properties of
individual residues, we define two single-body prop-
erties: mean hitting times and mean commute times,
<Hr(j)> = �i H(j,i)/N and <τ (j)> = �i τ (j,i)/N for
each residue. These properties provide a measure of
the allosteric potential of residues. Panel (b) displays
the mean hitting times for xylose isomerase. Metal-
binding residues are E267, E231, D338, and D295 in
this case. The hitting time profile shows that all these
residues (indicated by red dots) are located at min-
ima, i.e., they communicate efficiently with all other
residues or they are very sensitive to signals conveyed
by other residues. Panel (c) shows that in addition

to having small <Hr(j)> values (abscissa), their vari-
ances in H(j,i) (for 1 ≤ i ≤ N) are small, suggesting
that these residues are not only fast but also precise
in their communication with other residues.

Panels (a′)–(c′), on the contrary, present the re-
sults for an enzyme, human carbonic anhydrase II,
with respect to its catalytic residues H64, Q92, H94,
H96, and H119. Again, the active residues appear
to be highly predisposed to efficient communication
with the rest of the protein, in addition to be precisely
tuned (i.e., have minimal variance in hitting times).

These results suggest that the positions of the
active residues in the 3D structure may have been
evolutionarily optimized to ensure efficient communi-
cation. In order to examine to which extent the sites
with high allosteric potential (or enhanced commu-
nication properties) are evolutionarily conserved, we
compared in Figure 5 the color-coded diagrams based
on communication properties (panels a and a′) and
conservation properties (panels b and b′). Conserva-
tion scores were obtained using the ConSurf server.49

The comparisons of panels (a) and (b), and panels
(a′) and (b′) clearly demonstrates the correlation be-
tween conservation patterns and efficient communica-
tion propensities, i.e., those residues distinguished by
their efficient signaling properties are also evolution-
arily conserved presumably due to their functional
role.

There are currently several studies that unravel
the structural origins of molecular signaling pro-
cesses using NMA. A recent study by Beratan and
coworkers50 demonstrated, e.g., that local structural
changes triggered by ligand binding can translate
into signaling responses at remote allosteric sites and
different motions mediate different signaling path-
ways. The connection between signaling pathways
and collective motions predicted by ENM–NMA has
been also demonstrated in an extensive study of
GroEL–GroES machinery.51 Such analyses could be
particularly useful in structure-based design of in-
hibitors/regulators of allosteric proteins.

NMA in Structural Refinement
Soon after the pioneering articles in the 1980s20–22

that demonstrated the utility of NMA for investi-
gating the equilibrium dynamics of proteins, it was
suggested that the new methodology could assist in
refining X-ray structures.52–55 The refinement of B-
factors, previously based on a single fitted parame-
ter per atom, was replaced by a summation of the
anisotropic fluctuations over a selected set of low-
frequency normal modes. The main conceptual ad-
vantage of a NMA-based refinement over traditional
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FIGURE 4 | Efficient signal propagation properties of active sites illustrated for a metal-binding protein (a–c) and an enzyme (a′–c′). Hit time
maps for cobalt-binding xylose isomerase [Protein Data Bank (PDB) code: 1a0c] and for human carbonic anhydrase II (PDB code: 1a42) are
displayed in the respective panels (a) and (a′). Average hit time profiles as a function of residue number are shown in panels (b) and (b′) with
metal-binding and catalytic residues labeled by the red dots in the two respective cases. Panels (c) and (c′) display the average hit time versus
standard deviation for each residue for the two cases. The residues that participate in metal binding (b) and catalysis (b′) (shown in red markers)
exhibit small average hit time and small-to-moderate standard deviation, indicative of their fast and precise communication properties.

refinements is that it takes account of intrinsic mo-
tions and correlations. The essence of the refinement
procedure is to minimize the difference (R-factor) be-
tween observed structure factors and those calculated
based on model parameters. In a typical NMA-based
refinement, the model is evaluated using the posi-
tion vectors, R0 + ∑

k ckuk, perturbed along normal
modes (k), where ck is the contribution of mode k to
be fitted. As low-frequency modes induce the largest
displacements, a subset of slow modes is usually suffi-
cient, and thus the number of fitting parameters is usu-
ally significantly smaller than the number of atoms.
NMA-based fitting with a small number of parame-

ters may outperform standard refinements with many
more parameters52,54,56 while avoiding overfitting.
NMA refinement also allows for large movements
beyond the capability of other refinement methods57

and is of particular utility for large structures and
complexes that are inherently flexible.58–60 In an ap-
plication to the potassium channel KcsA, e.g., Chen et
al.56 were able to resolve residues that were originally
missing and obtain anisotropic displacement param-
eters related to functional motions.

An additional advantage of NMA refinement
is that it inherently decomposes the atomic fluctua-
tions into their internal and external components. The
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FIGURE 5 | Correlation between signaling efficiency and
evolutionary conservation. Panels (a; 1a0c) and (a′; 1a42) show the
ribbon diagrams color coded by the distance of residues from the
origin in Figure 4 (c) and (c′). The regions colored blue refer to the
fastest and most precise communication sites. Panels (b) and (b′) are
color coded by conservation score of each residue as obtained from the
Consurf server, the most conserved sites being colored purple. The
metal-binding and catalytic sites are shown in space-filling
representation.

internal component refers to the collective vibrational
motions of the molecule (corresponding to the non-
zero eigenvalues), which are usually of interest for
assessing functional mechanisms. The external com-
ponent, on the contrary, reflects the static disorder
and rigid body motion in the crystal as well as uni-
form thermal noise and inaccuracies in the experi-
ments. By separating the two components, it has been
demonstrated55,56,58–61 that rigid body motions make
a significant contribution to the B-factors observed in
X-ray crystallographic structures.

In recent years, it has been shown62 that NMA
can assist in molecular replacement (MR), the most
popular and rapid method for solving structures by
X-ray crystallography. The method is based on us-
ing a structural template. The authors showed for
three different examples (metallodextrin-binding pro-
tein, glutamine-binding protein, and HIV-1-protease)
that perturbing the template structures along one or
two low-frequency modes yields new conformers that
allow for successful MR, whereas the original struc-
tures fail to do so. This suggests that many structures

that cannot be resolved currently using MR—despite
the existence of apparently suitable templates—will
be resolved upon NMA-based perturbations of their
templates. This will save effort, time, and resources,
setting the stage for application of NMA-based ap-
proaches.

With the advances in cryo-EM techniques, there
is a great interest in refining the low-resolution (some-
times in the order of 15–25 Å) data. A useful strategy
to this aim is to dock known higher resolution struc-
tures (or substructures) onto EM density maps, but of-
ten the dynamic nature of the molecules is overlooked.
There is a need for tools that consider the flexibility of
the molecule during refinement, and NMA has been
naturally employed for this purpose.17,19,63,64 The
objective function to be minimized is the difference
between computed and measured electron densities,
using NMA soft modes as search directions. Applica-
tions of this methodology confirmed that large con-
formational changes need to be accounted for in order
to have a good fit to EM density maps. An impor-
tant contribution was the development of Quantized
Elastic Deformational Model,65,66 wherein the pro-
tein is treated as an elastic object with mass distri-
bution taken from the density maps. An elegant ap-
plication to fatty acid synthase67 demonstrated that
structures along electron density maps conform to
the first two softest modes. This study highlighted the
strength of combining NMA with multiple model re-
finement for highly flexible proteins, as well as the
ability to improve the resolution of the final EM
reconstructions.

Chacon et al.68 showed that alternative confor-
mations for several important well-studied systems
(bacterial RNA polymerase, the 30S and 50S subunits
of the ribosome, and chaperonin) could be detected
within single low-resolution EM structures, consis-
tent with major conformational changes predicted by
normal modes. These experimental results validate
what coarse-grained NMA models taught us long
ago—large-scale motions are insensitive to detailed
atomic interactions. A number of excellent tools, such
as NOMAD,69 NORMA,18 and NMFF,70 are now
available to make it easy and straightforward to ap-
ply NMA for interpreting EM density maps.

NMA in Modeling Structures,
Ligand-bound Forms, and Complexes
NMA approaches can assist not only in the refine-
ment of experimental structures but also for theo-
retical modeling. We are currently in a position to
improve the quality of homology models by refining
the template structures using ENM–NMA. The idea
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FIGURE 6 | Structural refinement of the bacteria ferric ion-binding protein by deforming a template protein along its normal modes. (a)
Superposition of the target and template proteins [Protein Data Bank codes 1xvy (red) and 1qvs (blue), respectively]. The proteins share 37%
sequence identity. The root-mean-square deviation (RMSD) between the structures is 3.21 Å. (b) Reduction of the RMSD by reconfigurations of the
template along the first 30 normal modes accessible to the template structure, calculated using the anisotropic network model. The red dotted line
shows the RMSD between the two structures prior to refinement.

is to restrict the search space to a subspace spanned by
a few lower frequency normal modes.71,72 When the
scoring function is put aside, by taking it to be ideal,
it has been recently shown that the normal modes
perform better than short MD refinement or coarse-
grained Monte Carlo sampling for moderate difficulty
template refinement.73 Baker and coworkers74 have
shown, e.g., that a search along dominant princi-
pal components of ensembles of structures in a given
family assists in improving the accuracy in compar-
ative modeling. The idea is to determine the domi-
nant directions of structural variance upon optimal
superimposition of multiple structures (for a given
protein or a family of proteins that share similar
fold) and evaluate the covariances in the departures
of residue/atom coordinates from their mean values,
which are organized in a covariance matrix (Eqs. 7
and 10). Eigenvalue decomposition of the latter fol-
lowing Eqs (7) and (10) yields the principal axes (as
eigenvectors) of structural deviations. Given that the
principal components from experimental structures
correlate well with normal modes,8,71,75 it should
be possible to use normal modes instead of princi-
pal components for this purpose, and thus to expand
the utility of this approach. For more about PCA and
the relation between NMA and PCA, the reader is
referred to previous work.8,24,71,75

The advantage of normal modes is that they can
be calculated based on individual template structures
and are not dependent on the availability of numer-
ous family representatives that are needed for PCA.
Figure 6 demonstrates the potential of this approach
for two ferric ion-binding proteins from bacteria that
share only 37% sequence identity. It can be seen

that movements along the four softest modes starting
from a given structure (‘template’) permit to attain
structures significantly closer to the ‘target’ structure.
When combining the first four modes, the root-mean-
square deviation (RMSD) may be reduced from 3.2 to
2.1 Å. The use of higher order modes has a marginal
effect, if any.

Recently, a combined method that utilizes
principal components and normal modes was
developed.76 A recent nice application of a simi-
lar methodology is the prediction of open and close
conformations of rat heme-free oxygenase,77 starting
from a unique heme-bound X-ray structure, and using
templates corresponding to a human and incomplete
rat heme-free structures.

CONCLUSION

Here, we present an overview of the foundations,
basic approximations, and utility of network mod-
els used for delineating protein dynamics. GNM and
ANM are physics-based models, whereas the Markov
model is information theoretic. The two approaches
provide information on different properties: motions
in the former case and pathways of communication
in the latter. Yet, the average properties predicted by
the former such as the mean-square fluctuations in
interresidue distances and cross-correlations between
residue fluctuations also define information theoretic
quantities such as hitting and/or commute times com-
puted for different residue pairs (Eqs. 13 and 14).
In a sense, graph/network representation allows us
to bridge between dynamic and allosteric signaling
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properties. In either case, the native contact topology
defines the most cooperative modes of motions, which
in turn define the effective resistance to deformation,
the efficient communication mechanisms, and the po-
tential structural changes in different forms or envi-
ronments, as illustrated in three different applications
(Figures 2–6).

We would like to emphasize in particular the
practical utility of NMA–ENM for gaining a deeper
understanding of the conformational space/ensemble
accessible to each protein. The advantage of NMA–

ENM analyses is that they can be performed based
on individual structures and do not depend on the
availability of numerous family representatives (that
are needed for principal components analyses, for ex-
ample). This endows these approaches with a signif-
icant advantage in filling the gaps in the sequence–
structure space in the absence of sufficiently broad
structural data for a given family. We anticipate these
features of ENM–NMA to be increasingly exploited,
especially in the characterization of supramolecular
structures and assemblies.
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