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The stochastic process of conformational transitions between isomeric states in polymer chains
is considered. In analogy with the conventional treatments of chain statistics where
equilibrium configurations are assigned statistical weights based on near neighbor
intramolecular potential, stochastic weights are defined for the configurational transitions
undergone by chains of pairwise interdependent bonds. The stochastic weights are expressed
by vV X+" matrices for N mobile bonds with v isomeric states accessible to each bond. For a
given time, serial multiplication of stochastic weight matrices yields the configurational
transition partition function corresponding to the space of time-delayed probabilities of
occurrence of two distinct configurations for a mobile segment. A matrix multiplication
scheme is devised to determine the fraction of bonds and/or segments that undergo specific

isomeric transitions in a given time interval.

I. INTRODUCTION

It is evident from several theoretical and experimental
studies that the rotational isomeric states (RIS) model'~? is
a powerful tool to investigate the configurational statistics of
polymer chains. Its fundamental assumption of discrete val-
ues for the rotational angles for each skeletal bond leads to a
discrete set of configurations which may conveniently be
analyzed to estimate and/or understand the configuration-
dependent properties of the chain. That the conformational
statistics of polymer bonds has a Markov nature, in the sense
that first neighbor dependence governs the probabilistic oc-
currence of different isomeric states, is confirmed by several
accumulating studies. Early studies of the equilibrium statis-
tics of polymers using realistic structural and conforma-
tional characteristics along those lines were performed by
Lifson,* Nagai,® Birshtein and Ptitsyn.® The basic approach
is to formulate a configurational partition function in con-
formity with the short-range intramolecular potential pre-
scribing the interdependent rotations of consecutive bonds.
A convenient scheme for the construction of the partition
function is the matrix method of statistical mechanics ori-
ginally devised by Kramers and Wannier’ on the basis of the
one-dimensional Ising model.® The matrix multiplication
scheme with statistical weights and generator matrices has
been extensively used in subsequent analytical treatments of
polymer statistics.”®

Recently, a description of local chain dynamics in terms
of conformational transitions between isomeric states was
developed.'® The approach, referred to as the dynamic rota-
tional isomeric states (DRIS) model, relies on the funda-
mental postulates underlying the conventional RIS model of
equilibrium statistics, such as the adoption of bond torsional
angles as the major variables identifying a given configura-
tion, the pairwise-dependent character of bond conforma-
tional behavior, the validity of short-range intramolecular
potentials impeding bond rotations, etc. Comparison with
previous experimental and theoretical work lends support to
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the use of the DRIS model as a tool to investigate local chain
dynamics.!'~'* A critical examination of the model in rela-
tion to constraints opposing the motion such as the environ-
mental viscous resistance and the chain connectivity vali-
dates its application to high frequency motions of short
polymeric segments in dilute solution.'?

The principal assumption in the DRIS model is that
only single bond rotations take place at a time. The same
assumption is also present in Glauber’s time-dependent Is-
ing model where no more than a single spin can change sign
during an infinitesimal time interval (7, 7 + d7).!¢ Brow-
nian dynamics simulations also show that the majority of
local motions in polymers originates from isolated single
bond isomeric transitions.!”

The location and heights of the isomeric minima in two-
dimensional energy maps specify the type and statistical
weights of the various isomeric states available to a given
pair of bonds. Alternatively, on the premise of pairwise in-
terdependent dynamics, the heights of the saddles between
minima fix the corresponding transition rates provided that
the influence of the detailed shape of the energy path to be
crossed is neglected. Thus, in contrast to the depth of the
isomeric minima in the treatments of equilibrium statistics,
the heights of the maxima are the quantities of interest to
determine chain stochastics. It should be noted, however,
that the knowledge of activation energies in the forward and
reverse directions for a given transition automatically fixes
the relative heights of the energy minima and hence equilib-
rium probabilities are inherently obtainable from chain sto-
chastics. ‘

The purpose of the present paper is to develop a conven-
ient mathematical scheme to analyze the configurational
stochastics of polymeric segments. All possible types of iso-
meric transitions are considered and assigned stochastic
weights in analogy to the conventional treatment of equilib-
rium statistics. The space of the time-delayed joint probabili-
ties of pairs of configurations now replaces that of the single
configurations considered in equilibrium treatments. A con-
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figurational transition partition function will be defined for a
given time 7, from the combination of the stochastic weights
corresponding to various isomeric transitions accessible
within the time interval 7. The matrix multiplication scheme
which has proved to be a tractable means to evaluate equilib-
rium properties will be employed to deduce dynamic proper-
ties such as average orientational correlations, the time-de-
pendent probability of occurrence of specific isomeric
transitions, etc.

A brief recapitulation of the DRIS model''* will be
presented in the next section, for self-consistency. The latter
was developed as an extension of the work by Jernigan,'®
originally developed for chains with independent bonds. The
process of configurational transitions is regarded'®'* in the
DRIS model as a discrete states, continuous time parameter
Markov process.'® The definition of stochastic weights, con-
figurational transition partition function and the matrix
multiplication scheme to determine transient properties will
be given in Sec. II1. The mathematical approach for treating
chain dynamics parallels the one commonly used to evaluate
static properties. Similarities between the two approaches
will be emphasized throughout the development of the theo-
ry for a more comprehensive presentation to the reader fa-
miliar with the RIS model. Some remarks concerning the
implications of the model on the equilibrium probabilities of
various configurations will be given in Sec. IV, which will be
followed by the conclusion.

Il. DRIS MODEL

For a segment of N bonds with v states accessible to each
bond, the stochastics of configurational transitions are gov-
erned by the master equation'®-'>'®

dP™N(7)/dr = ANP™N (1) ¢}

where P®™ (7) is the probability vector of order v, with the
element P (1) denoting the instantaneous probability of
configuration {®},, A™ is the vV X" transition matrix
whose ab th element (a#b) represents the rate constant for
the transition {®}, — {®},. A given configuration {®}, is
characterized by a set of vV isomeric states corresponding to
each bond. Following the assumption of single bond rotation
at a time 4 )" equates to zero if {®}, and {®}, possess
more than one bond with distinct isomeric state. Also micro-
scopic reversibility implies

AP = - S AP @
b

The stochastic process of configurational transitions is
stationary, i.e., P®™ (1) = P™(0), for all 7, provided that
P™(0) obeys the equilibrium distribution of various con-
figurations. The formal solution to Eq. (1) is

P™ (1) = exp{ AN 7}IP™(0) . 3)

Here exp{A®™7} physically represents the conditional
probability of transition between two configurations and
thus will be identified as the transition (or conditional)
probability matrix C™ (1), according to

C(N)(T) = exp{A(N’T} =BMN exp{A‘N’T}[B‘N’] -1 , (4)

where A® is the diagonal matrix of the eigenvalues A,,

k=1,+", of AN B™ is the matrix of the eigenvectors of
A™ and [B™]~! is the inverse of B™. Alternately, the
time-delayed joint probability of occurrence of configura-
tions {®}, and {®}, with a time interval 7, is given by the
ab th element of the time-dependent joint probability matrix
P™, as

PG =3 B exp{d, 7H[B™], PV (0), (5)
k

where the subscripts indicate the corresponding elements.
For processes where the principle of detailed balance as stat-
ed by Eq. (2) applies, all eigenvalues of A™ are strictly
negative with the exception of one of them, say 4,, which is
identically equal to zero.'*'? The latter ensures the conver-
gence to equilibrium properties at long times. The corre-
sponding eigenvector and the eigenrow yield the equilibrium
probability {®}, according to

PMM(0) =P () =B [B™]},! (6)
as may be deduced from Eq. (5). |4,], fori = 2to+v", repre-
sents the frequency of the ith mode contributing to relaxa-
tion.IS—-lS,lS

The stochastics of configurational transitions is fully
described by the time-dependent joint probability matrix
P ™ (7). Quantitative determination of P ™ () rests upon
the knowledge of the transition rate matrix A™. In fact, as
apparent from Egs. (5) and (6), eigenvalues and eigenfunc-
tions of the latter fix the elements of P ‘™ (7). The transition
rate matrix A™ in turn, is constructed following a suitable
kinetic scheme for the passages between various isomeric
configurations. For chains with bonds subject to indepen-
dent rotational potentials A™ may be found using the tran-
sition rate matrices A" for single bonds according to'®

AN = (AP ISl - ol) + I8AVeI---®I)

+ -+ (IsIel---®AY), 7N

where 1 is the identity matrix of order v and the subscripts
appended to A indicate the corresponding bond. @ de-
notes the direct product.! For pairwise interdependent
bonds, Eq. (7) is replaced by'*

AN = (ADIgI'- o)+ (Ie AP elg - aI)
~(Iele - I8AP \), (8)

where A{? is the v* X ” transition rate matrix for the pair of
1nterdependent bonds (i, j), I is of order +2. The transition
rate matrix A’ associated with independent bonds obeying
the scheme

gr=t=g" (D
is given by
—2r, r, r,
AV =] n —-r, 0 ]. (9
r 0 -r

Here r, and r, are the rate coefficients associated with the
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indicated transitions. Similarity transformation of A" yields

0 o0 0 1 0
A=|0 —r, 0 B® =|r/r, 1
0 0 —Q2ri+r) r/r, —1

and

r/(2r, +ry) ry/Q2ry +ry)
[BV] 1= 0 172
2ri/(2ri+r)  —r/Q2r+r)

which may be used in Eq. (5) to evaluate the elements of
P (7). The latter will be employed in the following and the
notation p(a;a®) will be used for the probability P}’ (7) of
occurrence of state {®}, = {a} at time 7and {®}, = {a°}
at 7 = 0 for a single bond subject to independent rotational
potential. Clearly @ and a® may assume the states ¢, g+, and
g~ if the scheme I is applicable, thus forming the nine ele-
ments of P " (7). Similarly, the symbol p(aB;a’8 %) will be

adopted for the elements P 2 (7) of P ‘¥ (7), bearing in
mind that {®}, = {af}and {®}, = {a°8°}, [or vise versa

since PV (r) is symmetric]. p(aB;a’B8°) reduces to the

product p(a;a®) p(B;8°) for independent bonds. This iden-

tity is obviously not applicable to pairwise interdependent
bonds. In this case, P ¥ (7) is found from A‘® which is de-
termined with reference to two-dimensional conformational
energy maps.'®'> The saddle height to be surmounted dur-
ing the passage a8 °— ap is substituted for the activation

energy in the Arrhenuis type expression for the correspond-
ing rate coefficient in A‘®. The preexponential factor in the
latter is left as a parameter which decreases with solvent
viscosity.

lil. CONFIGURATIONAL STOCHASTICS
A. Stochastic weight matrices

For simplicity, let us first consider the statistical weight
matrices for pairs of interdependent bonds in a polyethylene-
like chain, i.e., a symmetrical chain with threefold rotational
potential. In the absence of end effects, for a pair of bonds
(i — 1, i), the latter assumes the form'

1 o o
U=|1 o¥ owl. (1)
1 ow oV

Here ois the Boltzmann factor exp( — E_,/RT) where E,, is
the energy of the g* state in excess of the ¢ state, ® and ¥
reflect the contribution of the second order interactions E,,
and E,, prevailingintheg* g7 and g* g* states, respective-
ly.

Serial multiplication of the statistical weight matrices
yields the configurational partition function Z according to’

N-—-1
z=31] U,]J,

i=2

(12)

where J* and J are the row and column vectors

ry/(2r, + 1)
—-1/2
—r/(2r + 1)

6527
1
—172
—172
(10)
|
1
J*=[100); J=|{1 (13)
1

Our purpose is to write an analogous stochastic weight
matrix V; at a given 7, for the time-dependent transitions
undergone by the interdependent pair of bonds (i — 1, 7).
The elements of V; will be denoted as v; ({7;€ °5°). Serial
multiplication of V; will yield the configurational transition
partition function. As outlined in the preceding section, the
DRIS model provides a means for the evaluation of the time-
dependent joint probabilities p; ({77;5 °7°) of the states £ %°
and {7 with a time interval 7 for an isolated pair of indepen-
dent bonds (i — 1, /). We can anticipate that the latter will
be used to determine v; ({7;¢ °n°).

For an understanding of the relationship between
Pi (§m;¢ °n°) and v, (¢ °7°), it is helpful to look back, more
closely to the physical meaning of the elements of U .

The element u; ({n) of U, is defined' by invoking the
relationship

u;($n) =exp{ — [E;(n) + AE,({n)]/RT}. (14)

Here the exponential term includes (i) the contribution to
intramolecular potential from the rotation ®; of bond i, ex-
clusively, which we denote as E; (77), and (ii) the nonbonded
interaction which depends jointly on ®, _, and ®,, shown as
AE, ({n). The former contribution is deduced’ from the sin-
gle bond independent conformational behavior. The choice
of E;(t) as the zero energy level leads to exp{ — E;(7)/
RT} =1, 0, and ¢ for the states n=tg",and g~, respec-
tively. AE, ({n) equates to zero for independent bonds.

The apparent equilibrium probabilities p; (£77) in an iso-
lated pair®® of independent bonds (i — 1, /) may be written
in matrix notation as

1 g g
[2:éMl=2z7"o ¥ o (15)
o o oY
with
z,=14+40+20%(0+ V). (16)

A general expression for p; ({7), analogous to Eq. (14) will
be

pi(&n) =z "exp{ — (E,_, (&) +E. ()
+ AE;({n) )/RT}.
Equation (17) may be rewritten as

an
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pi&m) =2z 'pi_ (S (K (Sm) (18)
using the s1ngle bond partition function z, = 1 + 20 and the
equilibrium probabilities for isolated bonds p;(n) =z '
x exp{ — E;(m)/RT}, p;_(§) =z 'exp{ — E;,_,(£)/
RT}. The term k;({n) has been substituted for
exp{ — AE; ((57)/RT}. The product z3z; ' (§n) reduces to
unity for independent bonds. Comparison of Egs. (14) and
(18) yield the following relationship between p, ({7),
pi—1(£) and u; (&)

u;(&n) = (22 DeEm/pi_ 1 (8) . (19)

The inclusion or omission of the proportionality constant is
inconsequential since the latter is eliminated when evaluat-
ing average properties. So it may be arbitrarily set equal to 1.

In analogy to the above analysis, the time-dependent
joint probability p, (aB;a’B°) for the transition a’8°—aB
of the isolated pair of interdependent bonds may be written
as

pi(aBa®B®) =p;_ (xa®)p,(BiB°)k,(aBia’B®),  (20)

where the deviation from independent bond stochastics is
accounted for by the correction term k; (@B;a°8°) charac- A

teristic of the transition @’8°— aff undergone by the pair of
bonds (i — 1, #). The corresponding stochastic weight reads

v; (aB;a®B°) = p,(BiB°)k;(aB;a’B°) (21)
=p:(aBaB°)/p;_ 1 (a;0°) . (22)

Equation (20) is the dynamic counterpart of Eq. (18) of
equilibrium statistics. It should be recalled that p; _ , (e;a®)
represents an element of the joint probability matrix PV (7)
for the single bond (i — 1). The latter is easily found by
inserting Eq. (10) into Eq. (5). A similar operation starting
from A® instead of AV, yields the elements p; (a¢B;a°8°) of
P® (7). Thus, Eq. (22) is conveniently used to determine
the elements of the stochastic weight matrix V; (7) corre-
sponding to bonds (i — 1,{). It should be noted that V; (1) -
depends on the time interval 7 chosen. At 7 = 0, it reduces to
U, (apart from the constant factor z,z;” '), as may be seen by
inserting the identities p;(aB;a’8°) =p;(a’B°) and
pi_ 1 (a;@®) =p;_, (a°) at 7 =0, into Eq. (22).

Let us consider the simplest case of v = 2 states @ and 8
accessible to each bond in a given pair. V; (a) will be defined
as

v(aasaa) v (aa;af) I v, (aBaa) v, (afaB)
o) | gD _ o) | o @) v (B o
U v Basaa) v, (Ba; aﬂ) v, (BBaa)  v,(BBaB)
v;(BasBa) v, (BeBB) ' v;(BB:Be) v (BBLB)
Thus, as shown by the above dashed lines, V; (7) is divided Alternately, Z_ may be found from
into v* submatrices of size v X v, each representing the sto-
chastic weights for the transitions to a given final state. H Vi (7) ]J (26)
=2

B. Transition partition function and a priori probabilities

The transition partition function Z, for a chain of an
bonds, with v states accessible to each bond, is defined as the
serial product of the stochastic weight matrices according to

zZ =J H V. (n|J, (24)
i=2
whereJ = col(1, 1,-+-1),J¥ =row(1,1,-:-1),V,(7) isthe
diagonal matrix defined as
v (a;a)
vy(a;8)
V(1) = . .(25)

v (vyv)

Here v, (a;8) may conveniently be replaced by p(a;B) inas-
much as the stochastic behavior of bond 2 is not affected by
the first bond and V, (), i = 3, N — 1 is the v* X +? stochas-
tic weight matrix for bonds (i — 1, ), with the structure
given by Eq. (23) for the simple case of v = 2. The adapta-
tion of Eq. (23) to v> 2 is straightforward. It should be
noted that, the rotations of the terminal bonds are not in-
cluded in Eq. (24), as they do not affect the internal configu-
rational transitions.

where V,(7) is now identical in form to V;(7) for i=2,
N — 1, with the adoption of k,(aB;a’8°) = 1. This more
convenient notation will be preferred in the following. Equa-
tion (26) of chain dynamics is equivalent to Eq. (12) of
chain statistics.

The matrix multiplication of Eq. (24) [or (26)] gener-
ates the required sum of products

Z, =33 Y Ivaa®)vs(aBia’B)v (BrB°Y) -]

(27)
where the summation is performed over all possible initial
states @, B°, 7°, - -+° and final states a, 3, 7, - *v for bonds

whose ordinal numbers are indicated by the subscripts. Us-
ing Eq. (22), Eq. (27) may be written in terms of the ele-
ments of P®(7) and P9 (7) as

Z, =YY |p:(aBaB°) [p.(Br:B V) /ps(BS)]

X "[PN_1(uvw"V")/pN_z(#;ﬂ")]] : (28)

It should be noted that the definition of V, (¢) according to
Eq. (23) ensures the juxtaposition in the above series of the
stochastic weight with identical initial and final states for the
common bond, as required by chain connectivity.
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The term in brackets in Eq. (28) represents the stochas-
tic weight Q{®,; ®,} of the joint occurrence of the two
configurations {®}, = {a°8%°° -} and
{®}, ={aBys: -} characterized by the isomeric states of
the N — 2 internal bonds, i.e.,

Q{®,;®,} = {p;(aBa’B°) [p.(BY:BY")/p:s(BL°)]

X [ps(¥8;7°8°) /pa(¥:¥™) 1<} (29)

Consequently, the a priori probability p*{®, ;®, } of the
transition {®}, — {®}, at time is

o0} =0{0,;0,}/Z, . (30)

In analogy with the conventional treatment of equilibri-
um statistics, it is possible to determine the a priori probabili-
ties of specific isomeric transitions at a given time, along the
chain. For instance, the a priori probablhty f*(tg ) of the
joint occurrence of state 7 at time 7and g™ 4t 7 = 0, for bond
J, will be

j— 1
prgt =z [T vin|

XV¥(r) ]'[
i=j+1
where V¥(7) is the stochastic weight matrix where all ele-
ments v; (aB;a’8°) with B°, B £g*, t are equated to zero.
This device retains precisely those terms meeting the condi-
tion g* — ¢ in the sum of stochastic weights Q{®, ;®, } over
all transitions of the chain, at a given time .

Similarly, the a priori probability of a specific joint
event, say (g*¢) at = 0 and {g—g* } at time 7, for the pair
of bonds (j — 1, ) may be found, using Eq. (31), but now
equating all elements of V¥ to zero, with the exception of
v (g 8T8t ).

The average number of bonds which undergo the transi-
tion g™ — ¢, for instance, within the time interval = will be

(n(t,g*)) =(N—-2)p*(r,g™"), (32)

where p*(7;,g*) is the a priori probability of the transition
g -t averaged over all possible configurational changes of
the internal bonds, according to

V:(T)]J] (31)

prgT ) =(N=-2)" z prsgt).
=
The summation of Eq. (33) may be readily computed by the
matrix generation method described in Ref. 1 for the equiva-
lent static probabilities. Here the stochastic weight matrices
replace the statistical weight matrices. Thus,

(33)

PHE) = (N— 2)~lz—’J*[H vemls, cs

where
N Vi(7) V()

(EM) = 35
Vi(&m [0 V(9 (33)
J*=1[J* 0 0---0]

J =col(0, 0,---0, J). (36)

Here J* and J are row and column vectors of order 2v2.
V() is obtained from V; () by striking all elements except
those of column (&;7) for bond j, as already defined in Eq.

p*(aBiin) = (n(aBién))/(N—13),

6529

(31). Similarly the time dependent a priori probability

p*(aB;én) of the pair transition {7 - af, within a time in-

terval 7 or the average number (n(afB;{n)) of pairs of bond
that have undergone this transition may be found from

37
N—1 .

=(N-=-3)"1Z1J* II Vj(aﬁ;gﬂ)]J, (38)
i=2

where V¥(7) in i\’, (aB;én), through Eq. (35), has all ele-
ments equal to zero with the exception of v; (afiém).

The extension of the formulation to the analysis of the
time-dependent occurrence of any type of configurational
transition for any length of sequence is straightforward. It is
sufficient to perform averages by striking suitable elements
of the stochastic weight matrices, as illustrated by Eq. (31)
for the simplest case of single bond transition.

C. Average transient properties

Let f; (a;a®) be a time-dependent function of the transi-
tion @®—a undergone by the ith bond. Its average (f; (7))
over all configurational transitions of the chain at time 7 may
be found from

=1 N1
(/}(T)):ZT—IJ*[H Vj(r)]V,(T)Fi[ [I Va(D|J,
j=2

m=i+41
(3%
where F; is the diagonal matrix
f (a;) T
faB)
F, = .
L S
(40)

of the values of the function f; (a;a®) the several isomeric
transitions of bond /. Similarly the average of the product of
k such transient functions of consecutive bond rotations is
obtained by interdigitating the F’s with the appropriate
V(7)s,ie.,

Uifivr ‘
=Z " ,llivj] Iﬁk'V,,Fn” NI_I]

n={ m=i+k+1

l+k>
V.
(41)

Here the time arguments of V, () are omitted for brevity.
Local orientational motions depend in fact on the transi-
tion of several consecutive bonds. A quantitative measure of
such motions would be the orientational autocorrelation
function (OACF) associated with a vectorial quantity m
rigidly affixed to the chain. The latter is defined as
(m(0) -m(7)) where the angular brackets indicate the en-
semble average over all possible initial and final configura-
tions. Suppose m® is the fixed representation of m(7) in the
local (i + 1)th bond-based frame' where it is rigidly embed-
ded. In the simplest case where the orientational motion of m
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is prescribed by the rotation of the single bond /, the OACF
reduces to

(m(0) m(7)) = m”(T,"(0)T; (7))m°, (42)

where T, is the transformation matrix' which expresses m in
the ith bond-based local frame. The time argument follows
from the torsional angle of bond i, which is a time-dependent
variable. Eq. (42) may be regarded as the internal OACF of
m(7) as observed from the frame of the preceding bond. The
average over all configurational transitions may be comput-
ed by using a mathematical method devised by Gotlib,?!
Birshtein and Ptitsyn,® Hoeve,?” Lifson,* and Nagai,’ for
evaluating (T;) in equilibrium statistics. Accordingly, we
can define a pseudodiagonal matrix ||S; || of order 347 as

1S ]|
Ti ()T, (a)
T ()T, (B)

TT(MT, (v)
(43)
By following exactly the same arguments as those developed
for equilibrium statistics,' it can be shown that the average
quantity in Eq. (42) is given by

i—1

(TFO)T, (1) = Z 7 @* e I)| [ V,(n) @13]
j=2
X[Vi(r) e LIS, |]

N—1
X[ H Vk(T)®I3](J®IS)_ (44)

k=i+1

The matrix V, (7) ® L;||S; || in Eq. (43) consists of block ele-
ments of the form v, (aB;a°8°) T (8°) T, (B),thus associat-
ing each transition with the corresponding stochastic
weight. Similarly, the OA CF which depends on the rotations
of the pair of bonds (i — 1, /) may be found using the same
formula as Eq. (43), provided that V, (7) ® I;]|S; || is defined
as the matrix of block elements v, (af:a’8°) TFH(B) TL_,
(aO)T' 1 (@T (B).

If, alternately, the OACF depends on the simultaneous
rotations of k¥ bonds preceding bond (i + 1), Eq. (42) is
replaced by

i T
11 T10]

j=i=Tk+1

(m(0) m(7)) = m‘”(

X[ fl T, (7) >m°. (45)

j=i—k+1

An expression analogous to Eq. (44) for the average quanti-
ty in the right-hand side of Eq. (45) is not obtainable due to
the non commutativity of the matrices. Instead, a double
summation over the initial and final states available to the &
moving bonds yields the required OACF as

(m(0) -m(r))
=27 @33 00,010, T@, ) u
a b
(46)
where Q{®,;®, } is the stochastic weight for the transition

{®,}-{®,}, T{®, } represents the product of transforma-
tion matrices in serial order for the k initial torsional angles
in {®, }, Z, is the transition partition function for the mo-
bile segment of k bonds.

IV. REMARKS

The time-dependent probability p, (aB;a°8°) of the
transition from state a°8° at 7 = 0 to the state a3 at time 7,
for the interdependent pair of bonds (i — 1, i) is assumed to
result from three contributions, as formulated by Eq. (20).
(1) the independent stochastics of bond (i — 1) accounted
for by the term p; _ ; (a;a°) readily obtainable by inserting
Egs. (6) and (10) into Eq. (5), (ii) the independent sto-
chastics of bond i, represented by p, (5;8°), and (iii) a devi-
ation from independent stochastics due to the coupling of
the two bonds to give rise to secondary effects perturbing
independent dynamics. The latter assumes a distinct value
for each specific transition and may be indirectly obtained
from P ‘¥ (1) and P ‘P’ (7) which are in turn found from the
respective transition rate matrices A® and A", as outlined
in Sec. II. For pairs subject to independent rotational poten-
tials k, (af8;a°B’) = 1 and the stochastic weight Q{®, ;®, }
simplifies to the product p,(a;a®)p,(B;8°) - - . Otherwise,
the adoption of the pair stochastic weights, according to Eq.
(22), asfollows from the above formulation of p, (aB;a°8°),
leads to Eq. (29). It is clear that the division by p, _, (a;a°)
automatically avoids the double counting of the independent
transitions of bond 7 — 1, in the serial multiplication of pair
stochastic weights.

It should be noted that a slightly different approximate
expression of the form

pH{®,;®,} = pi(aB;a’B°)q,(By:B°Y)gs(yo;y°0®) - -
(46)

with

9.(Br:B°Y") = pa(Br:B(Y)/ ¥, ;p4(ﬂrﬁ°f) (47)
Y

was adopted in previous work for the probability of the tran-
sition {®,} = {a°8% 0 -} -{®,} ={aByo---}. The
probabilities given by Eq. (46) are normalized. The main
approximation in Eq. (46) is that pair probabilities associat-
ed with interdependent isolated pairs of bonds are adopted,
therein ignoring any effect which would lead to different
values depending on the serial order of the pair. That a
slightly distinct a priori probability of transition corresponds
to each bond (or pair of bonds) is clearly shown in the rigor-
ous formulation of Sec. II. Nevertheless, Eq. (46) is asimple
expression which may conveniently be used as a first order
approximation.

It is important to note that the equilibrium probabilities
indirectly obtained by the DRIS formalism, by summing, for
example, Q{®, ;®, } over the final states {®, }, are identical
to those independently obtainable by the conventional RIS
model of equilibrium statistics. In fact, the adoption of an
expression of the form of Eq. (29) was motivated by the
desire to reproduce, at 7 = 0, same equilibrium probabilities
as those predicted by the RIS model. Alternately, calcula-
tion performed by adopting time périods 7, significantly
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large compared to the time range (10~ '* s) of local relaxa-
tional motions, verify that P( ) = P(0).

V. CONCLUSION

A time-dependent transition partition function is intro-
duced in the present mathematical formulation of configura-
tional stochastics. The latter is found from the sum of the
stochastic weights associated with all possible types of con-
figurational transitions at a given time 7.

A given transition {®}, — {®}, is assigned a stochastic
weight Q{®,; @, } according to Eq. (29). This equation
rests upon the fundamental approximation of chain statistics
and dynamics of a Markov chain of pairwise dependent
bonds. Thus, the approach may be regarded as representa-
tive of an idealized chain unperturbed by any dynamic or
static effect of long-range nature or of intermolecular char-
acter.

The theory allows for the determination of the probabi-
listic occurence of specific configurational transitions in
polymeric segments. A recent application of the model was
to assess the fraction of segments undergoing structural
changes to excimer-favoring conformations as a function of
time.?>?* For flexible segments of about 10-15 bonds, a
practical method of estimating the time-dependent probabil-
ity of occurence of a given transition would be to evaluate the
corresponding stochastic weight from Eq. (29) and divide
by the transtion partition function defined by Eq. (24).

The matrix multiplication scheme employed in the pres-
ent study has its origins in classical treatments of equilibri-
um problems.”? It has proved to be highly versatile and
powerful to investigate polymer statistics. A future develop-
ment of the present study may be in the direction of the

formulation of generator matrices to compute average tran-
sient properties, in analogy to the well-established methods®
of equilibrium statistics.
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