Computational Analysis of nAChR a4 and b2 Subunit Stability and NMR Study of Protein Anesthetic Interaction

Logan Woodall1, Pei Tang2, Vasyl Bondarenko2, Jeffry Madura3

1Bioengineering & Bioinformatics Summer Institute, Dept. of Computational Biology, University of Pittsburgh, 15260
2Department of Anesthesiology, University of Pittsburgh, 15260
3Department of Chemistry and Biochemistry, Duquesne University, 15282

Abstract

Because the α4 and β2 subunits of the transmembrane domain of nAChRs are naturally unstable in solution suitable for NMR experimentation and structural determination, mutation of the subunit sequences has been performed to lower subunit pl. However, as α4 stability is much greater than β2 stability, further mutation of the β2 sequence at key residues has been attempted to increase β2 stability. Computer modeling and simulation of the α4 and β2 subunits provide a basis for assessing the mutant subunit stability. NMR experiments run both with and without anesthetic were also performed to provide insight as to which specific residues within the α4 subunit interact with anesthetic based on observed differences in chemical shifts.

Methods

NMR Sample:
- 250 µl α4
- 80 mM LDAO detergent
- pH 4.7
- 1H labeled

Experimental parameters:
1) p3919gp spectra:
- NS=16
- D1=1s
- Sw=16 ppm
- TD=16k
2) TROSY-HSQC
- NS=64
- D1=1s
- Sw=13 ppm
- TD=1k (1H), 128 (15N)

Computational Analysis:
- Native sequences placed in water boxes
- Energy minimization of the system
- Charge of solution neutralized
- Subunit dimerization
- Repeat sim. with membrane-like solution
- Repeat simulations with α4/β2 dimer
- Repeat sim. with mutant sequences
- Repeat sim. with heteropentameric transmembrane nAChR

Results

Computational Study
Water Boxes → Energy Minimization → Charge Neutralization → Dynamics Simulations

Computational Analysis of α4 nAChR subunit in a water box

Conclusions

This experiment indicates that isoflurane is a more potent general anesthetic than halothane. Tryptophan residues displayed notable chemical shifts upon addition of anesthetics with W130NH being the more reactive of the two trp residues. This difference in reactivity is probably due to a closer proximity to the edge of the protein.

Future Research

Continuation of the incomplete molecular dynamics modeling of the nAChR subunits could yield valuable insight into novel mutations increasing β2 stability. Further NMR studies using β2 could then provide a basis for comparing the strengths of isoflurane and halothane.

Acknowledgements

The national BBSI program (http://bbsi.eeicom.com) is a joint initiative of the NIH-NIBIB and NSF-EEC, and the BBSI @ Pitt is supported by the National Science Foundation under Grant EEC-0234002.

Special thanks to the University of Pittsburgh for allowing me to take part in research at their facilities. Also, Dr. Pei Tang, my research advisor, Dr. Vasyl Bondarenko for his instruction with NMR, Dr. Jeffry Madura for providing assistance with my computational work, and Dr. Tommy Tillman for providing insight into α4/β2 subunit properties.

References


Introduction

General anesthetics are characterized by their ability to induce unconsciousness and prevent painful stimuli from being recognized. These drugs have been used since the late 1800s without a clear understanding of the mechanism by which they bring about their effects. Study of the anesthetic mechanism of action is challenging due to the difficulties associated with isolation and manipulation of the membrane-bound proteins that play a role in general anesthesia.

NMR spectroscopy is rarely used to determine the structure of membrane-bound proteins due to the inherent instability of these proteins in aqueous solution. NMR is, however, a useful technique for providing insight into the interaction between general anesthetics and protein receptors within the cell membrane. NMR experiments are useful in that they can be used to identify specific residues to which anesthetics bind as indicated by chemical shifts of the residue’s peak. NMR can also indicate effects on protein motion caused by exposure to general anesthetics through the use of rmsd calculations to determine protein relaxation times. The focus of this experiment has been to observe the interaction of anesthetics with certain residues of the α4 nicotinic acetylcholine receptor (nAChR) subunit.