First Order Corrections of pKa Values for Crystallization Optimization Trials

Anita Anburajan
BBSI, Department of Computational Biology, University of Pittsburgh, Pittsburgh PA
New York University, New York, NY
Outline

- Crystallization background
- Introduction of problem
 - Preliminary results
- Purpose / Goal
- Methods
- Results and discussion
- Conclusion
Crystallization Background

- Given biological macromolecule
 - Proteins, polysaccharides, nucleic acids, etc.

- Convert into a crystalline state with a high degree of internal order

- Achieved by careful manipulation of environmental parameters to slowly reduce solubility
 - pH, concentration, temperature, etc.
Problems Associated with Macromolecular Crystallization

- As many as 25 controllable parameters
- Givens with limited predictive value
- Strong interdependence amongst variables
- Difficulty in applying theory of thermodynamics at the bench
- Limited time, material and human resources
Crystallization Optimization Trials

- Extensive scanning of existing crystallization results to identify promising conditions
- Trials completed via grid screen.
- 1-2 parameters systematically varied amongst the original combination of conditions surrounding the successful crystallization
 - pH and concentration
- Implementation of grid screen:
 - By hand or by automated crystallization robots
 - Often poses errors in accuracy and precision
 - Avoid errors by use of the 4 corners method
Problem

Recent experiments using the buffer solution, BTP (1,3 bis(tris(hydroxymethyl) methylamino)propane) has not achieved the level of accuracy required for crystallization optimization trials.

- High accuracy, in this context, is defined as measured values falling within ±0.05 units of target values.
Preliminary Results

Ideal Behavior vs. Nonideal Behavior Displayed Across a Gridscreen

HEPES is acting more ideally than BTP
Neither HEPES nor BTP can be considered ideal solutions

- Salt additive

However, BTP is subject to a greater level of nonideal behavior which has shifted its pKa value – or acid dissociation value.

- There is a different volume of acid in the wells than we expected.
Goal

- Calculate the error in the acid dissociation value
 - Determine actual volume of acid present in the wells.
- Readjust the spreadsheet which controls the crystallization robot
- Run a second trial and hope for improvement!

If results fail to improve trial accuracy:
- Error in the published pKa value
- Effect of the second titrateable group
Methods – Calculate error in the pKa

The Henderson Hasselbalch equation:

\[
pH = pK_a + \log \frac{[A^-]}{[HA]}
\]

- Which can be rewritten as:

\[
pH = pK_a - \log \frac{x}{(1 - x)}
\]

Where \(x = \) volume of acid
Methods – Calculate error in the pKa

Taylor Series is used to develop an approximation of a function where δpK is very small.

$$pK_a = pK_{a,0} + \delta pK$$

- Subsequent terms in the series allow for a greater approximation

$$f(x_0 + \delta x) \approx f(x_0) + \left(\frac{df(x_0)}{dx}\right)(\delta x) + \left(\frac{1}{2}\right)\left(\frac{d^2f(x_0)}{dx^2}\right)(\delta x^2) + \ldots \left(\frac{1}{n}\right)\left(\frac{d^nf(x_0)}{dx^n}\right)(\delta x^n)$$

- We performed a first order correction
Methods – Calculate error in the pKa

$$\delta p_k = \left(\frac{1}{\alpha_i}\right) \times (x_i - x_{c,i})$$

Where $1/\alpha_i$ is the scaling factor
Where x_i is the measured volume of acid present in the wells
Where $x_{c,i}$ is the calculated volume of acid present in the wells
Using the algorithm under false circumstances

HEPES

$$
(4-(2\text{-hydroxyethyl})\text{-}1\text{ Piperazineethanesulfonic acid})
$$

- Buffer solution acting under ideal behavior
- pKa = 7.55
- Use algorithm with false pKa values 7.10 and 8.00

<table>
<thead>
<tr>
<th>pH</th>
<th>Vol Acid</th>
<th>Vol Base</th>
<th>Vol Buffer</th>
<th>Buffer Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.50</td>
<td>99.68</td>
<td>0.32</td>
<td>0.00</td>
<td>0.14</td>
</tr>
<tr>
<td>5.51</td>
<td>99.69</td>
<td>0.32</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>5.52</td>
<td>99.67</td>
<td>0.33</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>5.53</td>
<td>99.66</td>
<td>0.34</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>5.54</td>
<td>99.65</td>
<td>0.35</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>5.55</td>
<td>99.65</td>
<td>0.35</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>5.56</td>
<td>99.64</td>
<td>0.36</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>5.57</td>
<td>99.63</td>
<td>0.37</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>5.58</td>
<td>99.62</td>
<td>0.38</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>5.59</td>
<td>99.61</td>
<td>0.39</td>
<td>0.00</td>
<td>0.18</td>
</tr>
<tr>
<td>5.60</td>
<td>99.60</td>
<td>0.40</td>
<td>0.00</td>
<td>0.18</td>
</tr>
<tr>
<td>5.61</td>
<td>99.59</td>
<td>0.41</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>5.62</td>
<td>99.58</td>
<td>0.42</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>5.63</td>
<td>99.58</td>
<td>0.42</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>5.64</td>
<td>99.57</td>
<td>0.43</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>5.65</td>
<td>99.56</td>
<td>0.44</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>5.66</td>
<td>99.55</td>
<td>0.45</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>5.67</td>
<td>99.53</td>
<td>0.47</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>5.68</td>
<td>99.52</td>
<td>0.48</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>5.69</td>
<td>99.51</td>
<td>0.49</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>5.70</td>
<td>99.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.23</td>
</tr>
<tr>
<td>5.71</td>
<td>99.49</td>
<td>0.51</td>
<td>0.00</td>
<td>0.23</td>
</tr>
<tr>
<td>5.72</td>
<td>99.48</td>
<td>0.52</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>5.73</td>
<td>99.47</td>
<td>0.53</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>5.74</td>
<td>99.45</td>
<td>0.55</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>5.75</td>
<td>99.44</td>
<td>0.56</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>5.76</td>
<td>99.43</td>
<td>0.57</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>5.77</td>
<td>99.41</td>
<td>0.59</td>
<td>0.00</td>
<td>0.27</td>
</tr>
<tr>
<td>5.78</td>
<td>99.40</td>
<td>0.60</td>
<td>0.00</td>
<td>0.27</td>
</tr>
<tr>
<td>5.79</td>
<td>99.39</td>
<td>0.61</td>
<td>0.00</td>
<td>0.28</td>
</tr>
<tr>
<td>5.80</td>
<td>99.37</td>
<td>0.63</td>
<td>0.00</td>
<td>0.29</td>
</tr>
<tr>
<td>5.81</td>
<td>99.36</td>
<td>0.64</td>
<td>0.00</td>
<td>0.29</td>
</tr>
<tr>
<td>5.82</td>
<td>99.34</td>
<td>0.66</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5.83</td>
<td>99.33</td>
<td>0.67</td>
<td>0.00</td>
<td>0.31</td>
</tr>
<tr>
<td>5.84</td>
<td>99.31</td>
<td>0.68</td>
<td>0.00</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Using the algorithm under false circumstances

- **Iteration** – a succession of approximations, each building on the one preceding till a certain degree of accuracy is achieved.

- After 10 iterations, we obtained the correct pKa value of 7.55.
- The δpK reduced by roughly half with each correction.
- We expected similar results for BTP.
Using the algorithm under false circumstances

It Works!
Using the algorithm on the problem buffer:

Using our experimental pH values for BTP, we calculated the error in the pKa.

The number of iterations was twice that required of HEPES.

- Effect of second, non-adjusted, titratable group

We obtained a pKa of approximately 7.27
Using the algorithm on the problem buffer:

DELTA PKA PROGRESSION
from pKa = 6.8

ESTIMATED PKA PROGRESSION
from pKa = 6.8
Results and Evaluation

Success! The margin of error has reduced to values within the permitted ±0.05 pH units.

Possible sources of withstanding error:
- Experimental error; pH meter
References

Acknowledgements

John M. Rosenberg
Dan Hennessy
Judy Weiber
Erik Duboué
BBSI Members

Thank You!
Questions?