Rotational Model for Oscillating Waves Over the Surface of A Sphere

G. Bard Ermentrout, Ph.D; Frederick Doamekpor
BBSI, Dept. of Computational Biology, Summer 2007
Department of Mathematics,
University of Pittsburgh
Introduction

- Wave oscillations in coupled networks find themselves in different biological environments
- Ex: Brain Wave Activity, Calcium deposits on frog oocyte surfaces
- Oscillations can be captured on electroencephalograms (EEGs)
Wave Rotation in EEGs

\[\alpha-\text{EEG: rotating waves} \]

0.55 0.32 0.09 0.02 0.01
Mathematical Background

- Weakly-coupled limit cycle oscillators reduced to scalar equations
- Must Prove to analyze data
Research Goals

- Oscillators tend toward synchronous movement
- To create a model that has non-synchronous solutions
- To determine how often these non-synchronous solutions occur in differing models (n=20 and n=64 oscillators)
Dodecahedron: A Simple Model

- Is a good model to start with:
 - 20 points evenly distributed on surface
 - Exactly 3 neighbors for each of the vertices
Dodecahedron: A Simple Model

- $x_{1p} = c + H(x_{8} - x_{1}) + H(x_{5} - x_{1}) + H(x_{2} - x_{1})$
- $x_{1'} = -x_{1}$
- $x_{2'} = c + H(x_{10} - x_{2}) + H(x_{3} - x_{2}) + H(x_{1} - x_{2}) - x_{1p}$
- $x_{3'} = c + H(x_{12} - x_{3}) + H(x_{4} - x_{3}) + H(x_{2} - x_{3}) - x_{1p}$
- $x_{4'} = c + H(x_{14} - x_{4}) + H(x_{5} - x_{4}) + H(x_{3} - x_{4}) - x_{1p}$
- $x_{5'} = c + H(x_{6} - x_{5}) + H(x_{4} - x_{5}) + H(x_{1} - x_{5}) - x_{1p}$
- $x_{6'} = c + H(x_{15} - x_{6}) + H(x_{7} - x_{6}) + H(x_{5} - x_{6}) - x_{1p}$
- $x_{7'} = c + H(x_{17} - x_{7}) + H(x_{8} - x_{7}) + H(x_{6} - x_{7}) - x_{1p}$
- $x_{8'} = c + H(x_{9} - x_{8}) + H(x_{7} - x_{8}) + H(x_{1} - x_{8}) - x_{1p}$
- $x_{9'} = c + H(x_{18} - x_{9}) + H(x_{10} - x_{9}) + H(x_{8} - x_{9}) - x_{1p}$
- $x_{10'} = c + H(x_{11} - x_{10}) + H(x_{9} - x_{10}) + H(x_{2} - x_{10}) - x_{1p}$
- $x_{11'} = c + H(x_{19} - x_{11}) + H(x_{12} - x_{11}) + H(x_{10} - x_{11}) - x_{1p}$
- $x_{12'} = c + H(x_{13} - x_{12}) + H(x_{11} - x_{12}) + H(x_{3} - x_{12}) - x_{1p}$
- $x_{13'} = c + H(x_{20} - x_{13}) + H(x_{14} - x_{13}) + H(x_{12} - x_{13}) - x_{1p}$
- $x_{14'} = c + H(x_{15} - x_{14}) + H(x_{13} - x_{14}) + H(x_{4} - x_{14}) - x_{1p}$
- $x_{15'} = c + H(x_{16} - x_{15}) + H(x_{14} - x_{15}) + H(x_{6} - x_{15}) - x_{1p}$
- $x_{16'} = c + H(x_{20} - x_{16}) + H(x_{17} - x_{16}) + H(x_{15} - x_{16}) - x_{1p}$
- $x_{17'} = c + H(x_{18} - x_{17}) + H(x_{16} - x_{17}) + H(x_{7} - x_{17}) - x_{1p}$
- $x_{18'} = c + H(x_{19} - x_{18}) + H(x_{17} - x_{18}) + H(x_{9} - x_{18}) - x_{1p}$
- $x_{19'} = c + H(x_{20} - x_{19}) + H(x_{18} - x_{19}) + H(x_{11} - x_{19}) - x_{1p}$
- $x_{20'} = c + H(x_{19} - x_{20}) + H(x_{16} - x_{20}) + H(x_{13} - x_{20}) - x_{1p}$

$H(x) = \sin(x)$
Theorem (from an earlier Ermentrout paper):

Let $H(x)$ be an odd periodic function:

- $H(x+2\pi) = H(x)$
- $H(-x) = -H(x)$

If these functions are weakly coupled in a network, then there exists a real world solution to this function that is asymptotically stable.

So if we use this model, we know there exist non-synchronized asymptotically stable solutions.
Platonic Solids
N=64 Model

- Difficult to evenly distribute 64 points about a sphere
- Neil Sloane-algorithm for finding coordinates of evenly distributed points on sphere’s surface
- C program created to find a neighborhood of fixed radius around each point
- Generated connection matrix (5-7 neighbors)
Results

- Our goal was to find out if non-synchronous solutions exist, and if so, how often they occur.
- For the Dodecahedron Model, ~2% of the time non-synchronous solutions occur.
- For the n=64 oscillator model, ~10% of the time non-synchronous solutions occur.
<table>
<thead>
<tr>
<th>Time</th>
<th>k0</th>
<th>k1</th>
<th>k2</th>
<th>k3</th>
<th>k4</th>
<th>k5</th>
<th>k6</th>
<th>k7</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>6.283185</td>
<td>6.283185</td>
<td>6.283185</td>
<td>5.403667e-16</td>
<td>6.283185</td>
<td>6.283185</td>
<td>6.283185</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.7742215</td>
<td>1.149241</td>
<td>1.947981</td>
<td>5.107681</td>
<td>2.843709</td>
<td>0.831345</td>
<td>1.519726</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>1.085755</td>
<td>1.613739</td>
<td>2.980551</td>
<td>4.972976</td>
<td>3.606308</td>
<td>0.6875429</td>
<td>2.489145</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.9573977</td>
<td>0.8454016</td>
<td>1.723876</td>
<td>5.891284</td>
<td>0.6686078</td>
<td>4.139472</td>
<td>2.782176</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>5.139515</td>
<td>5.378406</td>
<td>3.566591</td>
<td>0.5776515</td>
<td>5.782584</td>
<td>1.886276</td>
<td>2.700585</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>9.273564e-17</td>
<td>1.674152e-16</td>
<td>3.731395e-16</td>
<td>1.233485e-16</td>
<td>2.991039e-16</td>
<td>1.168475e-16</td>
<td>3.094887e-16</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.7742215</td>
<td>1.148241</td>
<td>1.947381</td>
<td>5.107561</td>
<td>2.843709</td>
<td>0.831345</td>
<td>1.519726</td>
</tr>
</tbody>
</table>
Synchronous vs. Non-synchronous Movement
Conclusions

- We found a successful model that produced non-synchronous solutions.
- We have an idea of how often these solutions occur for two different models.
Future Work

Future research on this topic can focus on:

- Observing higher numbers of n oscillators on the sphere’s surface
- Utilizing different periodic functions other than \(\sin(x) \)
- Placing not only oscillators but excitable or other active elements
- Altering the connectivity of networks to see if this affects the probability of synchronization
- Addition of long range connections with delays to see its effect (Connections common in the brain)
References

Thank you.

Any Questions?