A bioinformatics approach to the structural and functional analysis of the glycogen phosphorylase protein family

Jieming Shen1,2 and Hugh B. Nicholas, Jr.3

1Bioengineering & Bioinformatics Summer Institute, Dept. of Computational Biology, University of Pittsburgh, Pittsburgh, PA 15260
2Dept. of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
3Biomedical Initiative Group, Pittsburgh Supercomputing Center, Pittsburgh, PA 15213

Abstract

The enzyme glycogen phosphorylase catalyzes the breakdown of glycogen into glucose subunits. In this study, we utilized computational methods to examine 282 sequences in the glycogen phosphorylase protein family. Specifically, we integrated multiple sequence alignments obtained from a variety of different algorithms into a single refined alignment using the GeneDoc program and identified twenty highly conserved motifs using MEME. A phylogenetic tree, constructed using the PHYLIP suite software, SeqSpace, and GEnt, provided insight into the patterns of evolutionary descent for the protein family and organized sequences into various subfamilies based on distinctive sequence characteristics. Preliminary analysis of the tree identified twelve major subfamilies as well as other subfamilies, has a high probability of reflecting important adaptations of the species in the subfamilies to their environments. Future research will involve performing site-directed mutagenesis experiments to test the GEnt-predicted residues and determine their contribution to protein function. Additional computation work involving quantum mechanics and molecular mechanics can be conducted to identify more properties of the conserved residues, motifs, and GEnt-predicted residues.

Introduction

Cross entropy analysis of enzyme subfamilies provides insights into the positions of residues responsible for the evolutionary adaptations of that particular subfamily. Knowing such positions aids in the development of a phylogenetic profile for a protein family, which can indicate the pathways and physiological processes in which the enzymes appear. Glycogen phosphorylase is one of several enzymes expressed differentially during the development of the ventral furrow in drosophila embryo. A cross entropy analysis was conducted on the phosphorylase family in order to learn more about the enzyme’s role in this physiological event. Each subunit of the dimer contains an active site for the phosphorolysis of glycogen, a bound pyridoxal phosphate cofactor at catalytic site, a glycogen binding site, an allosteric effector site near the interface between the two subunits, and an interface region.

Methods

In the Metazoan subfamily, our cross entropy analysis was able to identify residue 155, known to be important in allosteric control of the enzyme. Other predicted residues, in Metazoa as well as other subfamilies, have a high probability of reflecting important adaptations of the species in the subfamilies to their environments. Future research will involve performing site-directed mutagenesis experiments to test the GEnt-predicted residues and determine their contribution to protein function. Additional computation work involving quantum mechanics and molecular mechanics can be conducted to identify more properties of the conserved residues, motifs, and GEnt-predicted residues.

Not enough information

Figure 1. A 3D representation of glycogen phosphorylase with functional residues noted (A). Glycogen phosphorylase removes glucose monomers from linear chains of glycogen (B).

Figure 2. Methodology overview.

Figure 3. Global view of refined multiple sequence alignment in GeneDoc with highlighted MEME motifs.

Figure 4. Phylogenetic tree representation of the Metazoan subfamily with brain (A), liver (B), and muscle (C) isozyme groups.

Figure 5. Principle component analysis reveals variance within the protein family.

Figure 6. GEnt analysis uncovers unique residues for each subgroup. Here, the GEnt plot is given for the Metazoan subfamily.

Figure 7. GEnt-predicted residues for the Metazoan subfamily are highlighted in the 3D structure of human liver phosphorylase.

Results & Conclusions

Acknowledgements

The national BBSI program (http://bbsi.eeicom.com) is a joint initiative of the NIH-NIBIB and NSF-EEC, and the BBSI @ Pitt is supported by the National Science Foundation under Grant EEC-0234002.

Hugh B. Nicholas, Jr.
Pittsburgh Supercomputing Center
Alexander J. Ropelewski
Ricardo G. Mendez

References

Nicholas Jr., H.B. Glutathione S-transferase subfamily differences: remodeling the subunit and domain interfaces. (http://www.bsci.yorku.ca/grad/faculty/nicholm.htm)