Review II: Cell Biology

Rajan Munshi

BBSI @ Pitt 2006

Department of Computational Biology
University of Pittsburgh School of Medicine

May 24, 2006

Outline

- Cell Cycle
- Signal Transduction
Cell Cycle

- Four phases of the cell cycle:
 - Mitosis (M phase)
 - Gap 1 (G1 phase)
 - DNA Synthesis (S phase)
 - Gap 2 (G2 phase)
 - A fifth "phase": G0 (quiescence)

Cell Cycle Phases

- M: cell division; each cell gets 1 copy of the genome
- G1: cell growth; preparation for DNA replication
- S: DNA synthesis (replication)
- G2: preparation for M phase
- M phase animations: (1) (2)
Chromatin Packaging

- Why does DNA in interphase “look” different from DNA in mitosis?
- Higher order of packaging
- Mitotic phase: DNA packaged into chromosomes
- Interphase: DNA present as chromatin
 - “beads-on-a-string”
 - beads = nucleosomes
 - nucleosomes = DNA wrapped around histones

- Mitotic chromosomes = transcriptionally inactive (heterochromatin)
- Interphase chromatin = transcriptionally active (euchromatin)

- Mitosis animations:
 - www.cellsalive.com/mitosis.htm
 - www.biology.arizona.edu/cell_bio/tutorials/cell_cycle/cells3.html
Cell Cycle Control

- Web animation (link)
- Checkpoints controlled by proteins
- Important group of checkpoint proteins are the cyclins
- Cyclin levels “cycle” during different phases
- Cyclins, by themselves, are inactive
- Associate with cyclin-dependent kinases (cdk)
- Cdk levels invariant throughout the cell cycle
- G1 cyclin — cyclin D (cdk4)
- S-phase cyclins — cyclins A and E (cdk2)
- G2 cyclins — cyclin B (cdc2 (cdk1))

Cyclins and cdks

- **Cyclins**
 - G1 cyclin (cyclin D)
 - S-phase cyclins (cyclins E and A)
 - Mitotic cyclins (cyclins B and A)
- **Cdk5**
 - G1 Cdk (cdk4)
 - S-phase cdk (cdk2)
 - M-phase cdk (cdc2 (Cdk1))
Cell Cycle Checkpoints

Nuclear envelope breakdown; assembly of mitotic spindle; activation of APC

M

Cyclin A-cdc2

Restriction point, R

Cyclin A-cdk2

Cyclin B-cdc2

Cyclin E-cdk2

Cyclin D-cdk4

G2

G1

S

In molecular terms, passing R is the phosphorylation of the retinoblastoma protein, Rb. Unphosphorylated Rb binds the transcription factor, E2F; the phosphorylated form cannot bind E2F, thereby allowing E2F to modulate gene expression

Dissociation of APC; exit from M

Regulation via Phosphorylation

- Phosphorylation and dephosphorylation regulate many key events
- Cell cycle control
- Signal transduction
- Transcription
Signal Transduction

- Ensures that a signal is converted from one form to another
- From the exterior of the cell to the interior
- *Retain* original signal content

Steps in Signal Transduction

- Signal is sent. e.g. hormone, non-steroid ligand (epinephrine)
- Recognition of the signal by the cell via a receptor.
- Receptors can be present on the cell membrane or in the cytosol
- *Internal signaling molecules* transduce and amplify the signal
- Carried out via a *signaling cascade*, with multiple regulatory steps
- E.g. Glycogen breakdown in response to epinephrine
Cell Receptors

- **Ion-channel linked**: involved in rapid synaptic signaling between excitable cells; mediated by neurotransmitters
- **Enzyme-linked receptors**: when activated, either function directly as enzymes or are associated with enzymes.
- **G-protein coupled receptors (GPCR)**

GPCRs

- Largest family of cell-surface receptors
- Biological functions include smell, taste, vision, blood pressure neurotransmission, embryogenesis, cell growth, development
- Rhodopsin is the only GPCR with a known 3D structure
- Contains 7 membrane traversing α helices (7TM)
- N terminal – outside cell, C terminal – inside cell
- Ligand binding outside cell induces conformational change detected inside cell
- Mediating molecule is a G protein (hence the name GPCR)
- Heterotrimeric GTP-binding regulatory protein (α, β, γ)
- Activated G protein transmits signal by binding to other proteins (e.g. adenylate cyclase: converts ATP to cAMP)
GPCR Structure

GPCR Structure (contd.)
Signal reception

Signal mediation and amplification

Regulation by reversible phosphorylation and dephosphorylation

Signal effects

Additional Reading

- Biochemistry, 5th ed., Berg, Tymoczko, Stryer
- Biochemistry, 3rd ed., Voet & Voet