Evolutionary analysis of the well characterized *endo16* promoter reveals substantial variation within functional sites

Paper by: James P. Balhoff and Gregory A. Wray
Presentation by: Stephanie Lucas
Reviewed by: Marie Wilkening and Chi Zheng
Cis-Regulatory System

- Responsible for the regulation of the gene by enhancers and repressors
- Core Promoter- site at which the transcriptional machinery (RNA polymerase) binds
- Transcription Factor Binding Sites- areas in which protein (TFs) bind to regulate transcription
- Module- a fragment of the regulatory system that generates a part of the overall regulatory function- consists of more than one TFBS and the sequence between them
Here’s the Problem....

- Changes within the regulatory region will affect gene expression which in turn is believed to affect the evolution of developmental and structural traits.

- We do not understand the evolutionary processes that cause variation within these regions of genes.
 - Since there’s no genetic code for these sequences, it’s hard to predict the consequences of a change in the nucleotide sequence.
The ideal sequence: endo16

- Many of the binding sites have been mapped and many of the cis-regulation mechanisms are understood
- 56 TFBS (modules A and B) that are necessary for transcription to occur
- Six modules (A, B, C, D, “E-F”, G)

Endo16 is a gene found in *S. purpuratus* (purple sea urchin)

It is an extracellular protein believed to be involved in cell adhesion.
Endo16 promoter and coding sequence until exon 6
Methods

- PCR/ cloning
- Sequence DNA
- Alignments done with CLUSTALX
 - Sectioned into subalignments for each module, TFBS, and non-functional sites
- Calculate nucleotide differences with DNASP
Overall levels of polymorphisms between different areas of a gene

- **Expected levels of polymorphisms**
 - Introns - highest
 - Cis-regulatory regions - intermediate
 - Exons - lowest

- **Why?**
 - Introns are believed to have no function - variation is more accepted
 - Cis-regulatory regions
 - some important areas that are necessary for transcription to occur - more conserved
 - less important areas - variation is more tolerated
 - Exons code for functional mRNA - variation is not tolerated due to change in potential protein structure and function
Table 1: Nucleotide diversity and fixed differences

<table>
<thead>
<tr>
<th>Sequence partition</th>
<th>π per site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire promoter</td>
<td>0.040</td>
</tr>
<tr>
<td>All modules</td>
<td>0.041</td>
</tr>
<tr>
<td>All intermodules</td>
<td>0.039</td>
</tr>
<tr>
<td>All b.s.</td>
<td>0.049</td>
</tr>
<tr>
<td>All non-b.s.</td>
<td>0.037</td>
</tr>
<tr>
<td>All non-GCF1 b.s.</td>
<td>0.044</td>
</tr>
<tr>
<td>All GCF1 b.s.</td>
<td>0.062</td>
</tr>
<tr>
<td>Exon 1</td>
<td>0.009</td>
</tr>
<tr>
<td>Exon 2</td>
<td>0.029</td>
</tr>
<tr>
<td>Exon 6</td>
<td>0.006</td>
</tr>
<tr>
<td>Intron 1</td>
<td>0.028</td>
</tr>
<tr>
<td>Intron 5</td>
<td>0.060</td>
</tr>
</tbody>
</table>

- Generally, levels of polymorphism within *endo16* are consistent with the expected results.

\[\pi=\text{average number of nucleotide differences between sequences}\]

b.s.- binding sites
S. purpuratus vs. *S. droebachiensis*
†Number of nucleotides excluding indels in population data
Observed levels of single nucleotide polymorphisms - promoter region only

- > 250 SNPs in the entire promoter

- Within the promoter region, modules B, C, D, and G surprisingly exhibit higher levels of polymorphisms within the binding sites compared to the non-binding sites.
Table 1: Nucleotide diversity and fixed differences in each module

<table>
<thead>
<tr>
<th>Sequence partition</th>
<th>π per site</th>
<th>θ per site</th>
<th>Fixed differences per site</th>
<th>Length $^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module A</td>
<td>0.026</td>
<td>0.023</td>
<td>0.041</td>
<td>184</td>
</tr>
<tr>
<td>Module A b.s.</td>
<td>0.014</td>
<td>0.017</td>
<td>0.030</td>
<td>64</td>
</tr>
<tr>
<td>Module A non-b.s.</td>
<td>0.033</td>
<td>0.027</td>
<td>0.048</td>
<td>120</td>
</tr>
<tr>
<td>Module B</td>
<td>0.016</td>
<td>0.020</td>
<td>0.047</td>
<td>213</td>
</tr>
<tr>
<td>Module B b.s.</td>
<td>0.028</td>
<td>0.026</td>
<td>0.060</td>
<td>54</td>
</tr>
<tr>
<td>Module B non-b.s.</td>
<td>0.012</td>
<td>0.018</td>
<td>0.043</td>
<td>159</td>
</tr>
<tr>
<td>Module C</td>
<td>0.024</td>
<td>0.029</td>
<td>0.070</td>
<td>159</td>
</tr>
<tr>
<td>Module C b.s.</td>
<td>0.036</td>
<td>0.037</td>
<td>0.088</td>
<td>66</td>
</tr>
<tr>
<td>Module C non-b.s.</td>
<td>0.015</td>
<td>0.023</td>
<td>0.057</td>
<td>93</td>
</tr>
<tr>
<td>Module D</td>
<td>0.050</td>
<td>0.053</td>
<td>0.070</td>
<td>227</td>
</tr>
<tr>
<td>Module D b.s.</td>
<td>0.064</td>
<td>0.066</td>
<td>0.087</td>
<td>86</td>
</tr>
<tr>
<td>Module D non-b.s.</td>
<td>0.041</td>
<td>0.045</td>
<td>0.061</td>
<td>141</td>
</tr>
<tr>
<td>FE region</td>
<td>0.075</td>
<td>0.059</td>
<td>0.204</td>
<td>54</td>
</tr>
<tr>
<td>Module G</td>
<td>0.086</td>
<td>0.072</td>
<td>0.091</td>
<td>197</td>
</tr>
<tr>
<td>Module G b.s.</td>
<td>0.110</td>
<td>0.103</td>
<td>0.102</td>
<td>48</td>
</tr>
<tr>
<td>Module G non-b.s.</td>
<td>0.078</td>
<td>0.062</td>
<td>0.088</td>
<td>149</td>
</tr>
</tbody>
</table>

b.s.- binding sites
S. purpuratus vs. *S. droebachiensis*
$^+$ Number of nucleotides excluding indels in population data

With the exception of module A, b.s. are more polymorphic than non-b.s.
Observed levels of polymorphisms in promoter region

- Module A had lower levels of single nucleotide polymorphisms compared to non-binding sites in the module (expected)
- Conclusion: Module A is most conserved
 - Function: to integrate the effects of all the other modules, making it very important.
Single Nucleotide Variation

- Modules A-C: $\pi \leq 0.026$, distal regions have more than double this value, where π is the average fraction of nucleotide differences between sequences in each module.
- Conclusion: proximal half of the cis-regulatory region under greater selective constraint than distal region.

![Graph showing single nucleotide variation]
Comparison to close relative

- This analysis was compared to *S. droebachiensis*, a close relative of the purple sea urchin (green).
- The conclusions drawn before were confirmed.
Indel (Length) Variation

- Indel- insertions/ deletions (can be more than on base pair)---it is common in promoter regions

- The longer the indel is in the promoter, the more disruptive it is to local protein interactions

- Developed a way to calculate the length variation so that they could compare its effects with other indels
 - This method weighs each indel differently depending on the size of the insertion/ deletion
Hypothesis for indel variation

- Indels are most likely to be found in between modules rather than in between the TFBS within the module.
- This is because the nucleotide sequence between the TFBS in a module may affect the binding of the TF.
Observed indel variation

- > 40 indels in promoter
- Indels range from 1 to 340 bps
- Follows single nucleotide polymorphism pattern
- Distal modules are more variable than proximal modules—respond similarly to constraint placed on local sequences (like SNPs)

x-axis: bps (intervals of 300 for indels, and 30 for SNPs)
Inserted sequences

- Out of 70 individuals (140 alleles), 2 alleles were much longer than the other samples
- One was an unrelated sequence (Spu1107)
- One was similar to the F and E modules that aren’t found in most *endo16* sequences (S75835)
 - 16 verified protein binding sites have been found in this inserted region of over 300 bps
- Insertion of entire functional module
F and E modules

- Ectodermal repressors
 - Most binding sites are located in this inserted area

- Question: How is *endo16* translation repressed in many of the samples?

- Their lack of presence in most of the samples suggest that other sequences of the regulatory region have this function
 - 2 binding sites near the D module may be involved in ectodermal repression
Discussion and Conclusions

- Unexpectedly, within the promoter sequence, TFBS are more polymorphic than non-coding regions within a module
 - Due to physical binding of the protein, some nucleotides within the TFBS are more important to the binding of the protein
 - In order to compensate for a SNP in the TFBS, another SNP may be necessary (2:1)

- Module A is under selective constraint due to its importance in transcription
 - Function to act as “integrator of input”---
Discussion and Conclusions Cont’d

- Different modules within the promoter sequence have different levels of polymorphisms - proximal modules are more conserved than distal ones
 - Length polymorphisms at proximal modules may be caused by background selection (since it’s so close to the gene)
- Modules E and F are the result of a recent insertion and are rare in *S. purpuratus*
 - Whole functional module inserted --- this shows how evolution can dramatically affect the promoter region
References

- Yuh, Chiou-Hwa; Bolouri, Hamid; and Davidson, Eric H. “Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control”. Development 128 (2001) 617-629.