BBSI Lab Session on June 25th, 2004

The ODE’s that are used are:

1) subdep.ode, example for substrate depletion

```plaintext
# substrate depletion
# dimensionless z=x+y
x' = nu*(z-x)*(eps^2+x^2)/(1+x^2)-x
z' = kappa-x
aux y = z-x
par kappa=0.2, eps=.05, nu=1
@ xp=x, yp=z, xlo=0.0, ylo=0.0, xhi=5, yhi=12, total=200
# change dsmin to 1e-5 and dsmax to 0.1 in auto
# start with kappa=0.02 and integrate to get on a fixed point
# done
```

2) actinh.ode, example for activator-inhibitor

```plaintext
# activator inhibitor
# gradually decrease b to 0.5 see the oscillation and then the fixed point
x' = (eps^2+x^2)/((1+y)*(1+x^2))-a*x
y' = (b-y/(1+c*x^2))/tau
par a=.1, b=1, c=8, eps=0.1, tau=10
init x=0.07811, y=1.04881
@ xp=x, yp=y, xlo=0, ylo=0, xhi=4, yhi=6
@ nmesh=100, total=1000, meth=qualrk, tol=1e-6, atol=1e-6
@ dt=.5
done
```

3) goldbeter.ode, model for circadian oscillations

```plaintext
# goldbeter model Proc Roy Soc B 261:319-324
#
m'=nus*1/(1+(pn/ki)^n)-num*m/(km+m)
p0'=ks*m-v1*p0/(p0+k1)+v2*p1/(p1+k2)
p1'=v1*p0/(p0+k1)+v4*p2/(k4+p2)-v2*p1/(k2+p1)-v3*p1/(k3+p1)
p2'=v3*p1/(k3+p1)-v4*p2/(k4+p2)-kk1*p2+kk2*pn-nud*p2/(kd+p2)
pn'=kk1*p2-kk2*pn
par nus=.76, num=.65, km=.5, ks=.38, nud=.95
par kk1=1.9, kk2=1.3, ki=1, kd=.2, n=4
par k1=2, k2=2, k3=2, k4=2
par v1=3.2, v2=1.58, v3=5, v4=2.5
# total protein
aux pt=p0+p1+p2+pn
#
init m=0.6, p0=.4, p1=.4, p2=.5, pn=.8
@ total=72
@ meth=qualrk, tol=1e-6
@ xp=pt, yp=m, xlo=0, ylo=0, xhi=72, yhi=6
done
```
4) **tysoncirc.ode, 2-variable model for circadian oscillations**

```
# tysons circadian model
# from Biophys. J. 1999 77: 2411-2417
# this is the 2-variable model
q=2/(1+sqrt(1+8*keq*pt))
m'=num/(1+(.5*pt/(1-q)/a)^2)-km*m
pt'=(num*m-kp1*pt*q-kp2*pt)/(jp+pt*(q+.5*r*(1-q)))-kp3*pt
par keq=200,num=1,km=.1,nup=.5,kp1=10,kp2=.03,kp3=0.1
par a=0.1,jp=.05,r=2
@ total=200
@ nmesh=100
@ xp=pt,yp=m,xlo=0,ylo=0,xhi=4,yhi=10
@ meth=qualrk,tol=1e-6
@ init m=1,pt=3.1
done
```

5) **cycle3.ode, 4-variable cell cycle model with mass etc.**

```
# cell cycle with mass and A
dx/dt=k1-(k2p+k2pp*y)*x
dy/dt=-k4*m*x*y/(j4+y)+(k3p+k3pp*a)*(1-y)/(j3+1-y)
da/dt=k5p+k5pp*(m*x)^n/(j5^n+(m*x)^n)-k6*a
dm/dt=mu*m*(1-m/mstar)
par k1=.04,k2p=.04,k2pp=1
par k3p=1,k3pp=10,k4=35,j3=.04,j4=.04
par k5=1,k5pp=.2,k5p=.005,j5=.3,n=4
par mu=.01,mstar=10
par xthr=.1
# when x drops to xthr, cell divides and mass (m) becomes half
global -1 x-xthr {m=.5*m}
init x=.1,y=.9,a=.2,m=.6
@ total=150,dt=.05,meth=qualrk,tol=1e-6,atol=1e-6
@ nplot=2,xhi=150,yp=x,yp2=m
@ xp2=t,xp3=t,xp4=t,ylo=0,yhi=1.5
@ meth=qualrk,tol=1e-6
@ init x=.1,y=.9,a=.2,m=.6
@ total=150,dt=.05,meth=qualrk,tol=1e-6,atol=1e-6
@ nplot=2,xhi=150,yp=x,yp2=m
done
```

6) **mapk.ode map kinase cascade with switch**

```
par mtot=500,kintot=50,phostot=100
par km1=50,km2=500,km3=22,km4=18,km5=85
par k1c=.01,k2c=15,k3c=.084,k4c=.06
mp=mtot-m-mpp
denkin=1+m/km1+mp/km2
denphos=1+m/km3+mp/km4+m/km5
nu1=k1c*kintot*(m/km1)/denkin
nu2=k2c*kintot*(mp/km2)/denkin
nu3=k3c*phostot*(mp/km3)/denphos
nu4=k4c*phostot*(mp/km4)/denphos
m'=nu4-nu1
mpp'=nu2-nu3
@ bound=10000
@ xp=m,yp=mpp,xlo=0,xhi=500,ylo=0,yhi=500
@ dt=1,meth=cvode,total=1000,tol=1e-8,atol=1e-6
@ nmesh=137
init m=11.5
@ bound=10000
@ init m=11.5,mpp=481
done
```
The results of these ODE’s:

1) subdep.ode, example for substrate depletion

kappa=0.2
i) Commands: Initialconds, Go, Nullcline, New

Figure 1. Note that fixed point is unstable (using initialconds, mice)

ii) Commands: Param, kappa=0.02, ok, Nullcline, New (x=0.02 is the invisible nullcline 😊)

Figure 2. Note that the new fixed point is stable (using initialconds, mice)

iii) Commands: Param, kappa=1, ok, Nullcline, New

Figure 3. Note that the new fixed point is stable (using initialconds, mice)
2) actinh.ode, example for activator-inhibitor

i) \(b=1 \)
Commands: Nullcline, New, Initialconds, Mice

![Figure 4. The fixed point is unstable](image)

ii) Commands: Param, \(b=0.8 \), ok, Nullcline, New, Initialconds, Mice

![Figure 5. The fixed point is unstable which leads to oscillations](image)

iii) Commands: Param, \(b=0.5 \), ok, Nullcline, New, Initialconds, Mice

![Figure 6. The fixed point is stable](image)
3) goldbeter.ode, model for circadian oscillations

i) Commands: Initialconds, go

Figure 7. M (mRNA) versus PT (total PER protein)

ii) Commands: erase, Xi vs t, M

Figure 8. M versus time (note that it is periodic for 24 hours)

iii) Commands: erase, Xi vs t, PT

Figure 9. PT versus time (note that it is periodic for 24 hours)
4) tysoncirc.ode, 2-variable model for circadian oscillations

i) Commands: Initialconds, go

Figure 10. M (mRNA) versus PT (total PER protein)

ii) Commands: erase, Xi vs t, M

Figure 11. M versus time (note that it is periodic for 24 hours)

iii) Commands: erase, Xi vs t, PT

Figure 12. PT versus time (note that it is periodic for 24 hours)
5) cycle3.ode, 4-variable cell cycle model with mass etc.

Commands: Initialconds, go

Figure 13. Black curve is x (cyclin CDK) vs. time and red curve is m (mass) vs. time. Mass becomes half (cell divides) when x drops to a certain value.
6) mapk.ode map kinase cascade with switch

Commands: Nullcline, New, Initial Conds, Mice

Figure 14. The bistable system’s first fixed point.

Figure 15. The bistable system’s second fixed point.