Identifying Cooperativity Among Transcription Factors Controlling the Cell Cycle In Yeast

Nilanjana Banerjee1,2 and Michael Q. Zhang1

Nucleic Acids Research, 2003, Vol.31, No.23

1Cold Spring Harbor Laboratory 2George Mason University

Presented by...
Mark Connell
with Julie Blackwood and Tristan Richards
Overview

- Transcription factors, gene expression
- Banerjee’s and Zhang’s goals
- Determining cooperativity
 - Comparing TFs bound alone and together
- Assessing biological relevance
 - Test ability to identify target genes
- Web tool to explore cooperativity
- Discussion
- My research
Transcription factors

Precise transcriptional control is essential to gene expression and regulation
- Control through cooperativity
- Three different modes of transcription factor interactions considered

http://www.accessexcellence.org/AB/GG/control_Express.html
Other relevant work

- Previous work studying cooperativity used computationally derived motif combinations... accurate?
- Genome-wide location data provides more reliable model for TF binding site interactions (*in vivo*)
- Genome-wide gene expression data
Banerjee’s and Zhang’s Goals:

- Use novel method to reveal how multiple TFs cooperate to regulate transcription in cell cycle
- Combine genome-wide gene expression data and chromatin immuno-precipitation (ChIP-chip) location data
- Compare coupled and independent binding of TFs to assess cooperativity
- Create a graphical web tool for researchers about cooperativity
Methods overview

- Use ChIP-chip genome-wide binding for 113 yeast regulators (TFs)
- Determine which gene pairs’ expressions are correlated
- Determine cooperativity using expression correlation scores for pairs of TFs versus TFs alone
- Use multivariate hypergeometric distribution to assess significant cooperativity
Selecting TF groups

- For all pairs of TFs, selected three different sets of target genes based on significant binding:
 - TF A but not B \((A \cap \neg B)\)
 - TF B but not A \((-A \cap B)\)
 - both TFs A and B \((A \cap B)\)
 - (at least five genes required for each set)

- Assumption: TFs are cooperative when BOTH A and B bind

For what genes is it essential that both A and B bind?
Correlation of gene pairs

- Calculated expression correlation scores
 - Quantify clustering of expression profiles
 - Performed for each set of genes
- Score \((EC_G)\) is fraction of gene pairs in a set \(G\) with correlation higher than threshold \(\lambda T\)
 - Threshold: 95\(^{th}\) percentile correlation value for all the pair-wise correlations between 1000 randomly chosen genes

High score, high correlation in a set
Assessing significant cooperativity

- Look at scores for different sets
- A combination of TFs were considered cooperative if:
 - $(EC_G)_A \cap B >> (EC_G)_{-A} \cap B$
 - $(EC_G)_A \cap B >> (EC_G)_A \cap -B$
Determining correlation of gene pairs

From ChIP Data

Set of promoters with binding of TF

Expression Profile

Expression Correlation Score

EC=0.05

EC=0.22!!

EC=0.06
Multivariate Hypergeometric Distribution(!)

\[P(m_a, m_{ab}, m_b \mid n_a, n_{ab}, n_b, N, M) = \frac{C_{n_a}^m C_{n_{ab}}^{m_{ab}} C_{n_b}^{m_b}}{C_N^M} \]

\(N = n_a + n_b + n_{ab} ; M = m_a + m_b + m_{ab} \)

\(N \) is the total number of gene pairs, composed of the 3 sets

\(M \) is the total number of correlated gene pairs

\[C_N^M = \binom{N}{M} = \frac{N!}{M!(N-M)!} \]
More MHD...

- Consider ALL possible combinations of $x_a + x_b + x_{ab}$, such that...

\[\sum_{i=\{a,b,ab\}} x_i = \sum_{i=\{a,b,ab\}} m_i \]

And... the sum of all probabilities calculated where $x_{ab} > m_{ab}$, the cooperativity p-value becomes...

\[P_C = P(x_{ab} \geq m_{ab}) = \sum_{x_{ab} \geq m_{ab}} P(m_a, m_{ab}, m_b \mid n_a, n_{ab}, n_b, N, M) \]
More MHD...

- Multiple hypothesis tests requires corrections to represent true alpha level
 - Bonferroni correction (fewer cooperative)
 - Holm’s Correction
- Also consider TF pairs that were not significantly cooperative after Holm’s correction included because biological evidence of potential cooperativity
Results: cooperativity!

- 31 out of 261 possible TF pairs showed significant cooperativity before p-value adjustments or due to biological relevance
 - 12 out of 31 TF pairs backed by literature
 - Depending on correction method, 12-14 TF pairs significantly cooperative by p-value
- 6 of 7 most cooperative pairs have literature evidence

Results from method are somewhat accurate!
Results: cooperativity!

- As expected, many of cooperative TF pairs come from cell cycle
- Other TF pairs are part of environmental stress response, metabolism
- Some TF pairs do not belong to defined functional groups, need further characterization
An example: mcm1 and ndd1

- Statistically significant
 - 2nd smallest Pc value out of 261 TF pairs
 - Valid cooperativity considering both alpha level corrections

- Biologically significant
 - Mcm1 does not “appreciably activate” either the SWI5 or CLB2 promoter
 - Research suggests that ndd1 is required for switching on genes during G2-M
Assessing biological relevance of target genes

- An Open Reading Frame (ORF) is a sequence of codons (from DNA or RNA)
- Compared sets of target genes of Mcm1 and Fkh2 derived via:
 - ChIP- and expression-based analysis
 - Motif- and expression-based analysis
- Compared these results with experimentally established target genes (Clb2 cluster)
 - ChIP method identified more targets
- Not a lot of overlap with Clb2 cluster...
Overlapping ORFS

Motif-based (30)

ChIP-chip (34)

Cdc20
Ace2
Clb2

Bud4
Rax2
Mtl1
Alk1
YIL158W
YJL051W

Clb2 Cluster (36)

7 1 10
Relevance of target genes

- Data for ChIP-positive target genes of Mcm1 and Fkh2
- Expression correlation of target genes of core profile of known targets
- Known targets circled in red
- Genes close to that set are likely additional targets of Mcm1 and Fkh2
The Visualization Tool

- Select any pairwise combination of TFs
 - Generates three lists of ORFs whose promoters have binding to TFs, representing the different sets of TFs A and B (A ∩ B, -A ∩ B, and A ∩ -B)
 - Creates a graph of each set’s gene expression profiles
 - Links for each ORF to explore biological relevance
- Select a significance level (Pc)
 - Creates TF cooperativity network between different functional categories
Revisiting mcm1 and ndd1: Expression profiles

MCM1+NDD1+, EC=0.69

MCM1+NDD1-, EC=0.34

NDD1+MCM1-, EC=0.36
Cooperativity network

- User defined significance levels
- Colors of edges relates to confidence in cooperativity
- Concentration in cell cycle
Discussion

- Combination of different data sources
- Lack of overlapping ORFs
 - Ways to increase accuracy
- Further research to characterize potentially cooperative TFs
- Useful in visualizing cross talk between functional groups
 - Allowing uploading of gene expression and binding data
- Errors
My Research Project

- Transcription factor binding site (TFBS) modeling
- Binding site sequences are varying for each TF
- Current work considers each position on sequence to contribute independently (of other positions) to binding
- Create model that considers dependency of one position in model upon another
 - Mutual Information Content
- Test model’s ability to identify known TFBSs, limit false negatives
References

Acknowledgements...

- Julie Blackwood and Tristan Richards
- Takis Benos
- Rajan Munshi
- BBSI Program n Peeps
- Pitt and Duquesne, and PSC and CMU
- Caterers Deanna Nachreiner and Carby Torok

THANKS!!!